Skillful seasonal prediction of summer wildfires over Central Asia

[1]  Cheng Sun,et al.  Periodic decadal swings in dry/wet conditions over Central Asia , 2022, Environmental Research Letters.

[2]  R. Wu,et al.  Interannual variation and prediction of wintertime precipitation in Central Asia , 2022, Journal of Climate.

[3]  June‐Yi Lee,et al.  Variability and Changes of Wildfire Potential over East Asia from 1981 to 2020 , 2022, Journal of the Korean earth science society.

[4]  Different responses of Central Asian precipitation to strong and weak El Niño events , 2021, Journal of Climate.

[5]  Yongqiang Liu,et al.  Important meteorological predictors for long-range wildfires in China , 2021 .

[6]  P. Ciais,et al.  Extreme fire weather is the major driver of severe bushfires in southeast Australia. , 2021, Science bulletin.

[7]  J. Thepaut,et al.  Supplementary material to "ERA5-Land: A state-of-the-art global reanalysis dataset for land applications" , 2021, Earth System Science Data.

[8]  O. Martius,et al.  Atmospheric Blocking and Weather Extremes over the Euro-Atlantic Sector – A Review , 2021 .

[9]  Qing Bao,et al.  Dynamical and Machine Learning Hybrid Seasonal Prediction of Summer Rainfall in China , 2021, Journal of Meteorological Research.

[10]  C. Derksen,et al.  GlobSnow v3.0 Northern Hemisphere snow water equivalent dataset , 2021, Scientific data.

[11]  P. Yan,et al.  ENSO modulates wildfire activity in China , 2021, Nature Communications.

[12]  Jingyong Zhang,et al.  Linkages of surface air temperature variations over Central Asia with large-scale climate patterns , 2021, Theoretical and Applied Climatology.

[13]  Zhaohui Lin,et al.  Spatiotemporal Variation of the Burned Area and Its Relationship with Climatic Factors in Central Kazakhstan , 2021, Remote. Sens..

[14]  P. Hsu,et al.  Diversity of East China Summer Rainfall Change in Post-El Niño Summers , 2020, Frontiers in Earth Science.

[15]  T. Kuemmerle,et al.  Post‐Soviet shifts in grazing and fire regimes changed the functional plant community composition on the Eurasian steppe , 2020, Global change biology.

[16]  Yunhe Yin,et al.  Impacts of Climate Change on Wildfires in Central Asia , 2020, Forests.

[17]  Yuhang Wang,et al.  Global Wildfire Outlook Forecast with Neural Networks , 2020, Remote. Sens..

[18]  J. Thepaut,et al.  The ERA5 global reanalysis , 2020, Quarterly Journal of the Royal Meteorological Society.

[19]  F. Hoffman,et al.  Quantifying the drivers and predictability of seasonal changes in African fire , 2020, Nature Communications.

[20]  P. Jones,et al.  Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset , 2020, Scientific Data.

[21]  R. Bradstock,et al.  Causes and consequences of eastern Australia's 2019–20 season of mega‐fires , 2020, Global change biology.

[22]  G. Schaepman‐Strub,et al.  Extensive fires in southeastern Siberian permafrost linked to preceding Arctic Oscillation , 2020, Science Advances.

[23]  O. Cronie,et al.  The Exceptional 2018 European Water Seesaw Calls for Action on Adaptation , 2019, Earth's Future.

[24]  Yang Liu,et al.  Machine Learning-Based Integration of High-Resolution Wildfire Smoke Simulations and Observations for Regional Health Impact Assessment , 2019, International journal of environmental research and public health.

[25]  Hongwei Yang,et al.  Roles of the Tropical/Extratropical Intraseasonal Oscillations on Generating the Heat Wave Over Yangtze River Valley: A Numerical Study , 2019, Journal of Geophysical Research: Atmospheres.

[26]  D. Gong,et al.  How are heat waves over Yangtze River valley associated with atmospheric quasi-biweekly oscillation? , 2018, Climate Dynamics.

[27]  Qiming Zhou,et al.  “Dry gets drier, wet gets wetter”: A case study over the arid regions of central Asia , 2018, International Journal of Climatology.

[28]  F. Molteni,et al.  SEAS5: the new ECMWF seasonal forecast system , 2018, Geoscientific Model Development.

[29]  Yan Li,et al.  Ensemble committee-based data intelligent approach for generating soil moisture forecasts with multivariate hydro-meteorological predictors , 2018, Soil and Tillage Research.

[30]  A. P. Williams,et al.  Global patterns of interannual climate–fire relationships , 2018, Global change biology.

[31]  Amir AghaKouchak,et al.  Skilful forecasting of global fire activity using seasonal climate predictions , 2018, Nature Communications.

[32]  W. Dong,et al.  Are Peak Summer Sultry Heat Wave Days over the Yangtze-Huaihe River Basin Predictable? , 2017 .

[33]  Wesley G. Page,et al.  An Evaluation of NDFD Weather Forecasts for Wildland Fire Behavior Prediction , 2017 .

[34]  Shuyu Wang,et al.  Heat Waves in China: Definitions, Leading Patterns, and Connections to Large‐Scale Atmospheric Circulation and SSTs , 2017 .

[35]  M. Tippett,et al.  Long‐Lead Prediction of the 2015 Fire and Haze Episode in Indonesia , 2017, Geophysical research letters.

[36]  J. Randerson,et al.  A human-driven decline in global burned area , 2017, Science.

[37]  Abolfazl Jaafari,et al.  A Bayesian modeling of wildfire probability in the Zagros Mountains, Iran , 2017, Ecol. Informatics.

[38]  Amir AghaKouchak,et al.  On the key role of droughts in the dynamics of summer fires in Mediterranean Europe , 2017, Scientific Reports.

[39]  Biswajeet Pradhan,et al.  A hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical area , 2017 .

[40]  J. Abatzoglou,et al.  Human exposure and sensitivity to globally extreme wildfire events , 2017, Nature Ecology &Evolution.

[41]  F. Pappenberger,et al.  The Potential Predictability of Fire Danger Provided by Numerical Weather Prediction , 2016 .

[42]  A. Cerda,et al.  The role of forest fire severity on vegetation recovery after 18 years. Implications for forest management of Quercus suber L. in Iberian Peninsula , 2016 .

[43]  Jeffrey G. Masek,et al.  Disturbance and the carbon balance of US forests: A quantitative review of impacts from harvests, fires, insects, and droughts , 2016 .

[44]  Douglas C. Morton,et al.  How much global burned area can be forecast on seasonal time scales using sea surface temperatures? , 2016 .

[45]  Marc Macias-Fauria,et al.  Sensitivity of global terrestrial ecosystems to climate variability , 2016, Nature.

[46]  Marco Turco,et al.  Seasonal predictability of summer fires in a Mediterranean environment , 2015 .

[47]  J. Bedia,et al.  Global patterns in the sensitivity of burned area to fire-weather: Implications for climate change , 2015 .

[48]  Grant J. Williamson,et al.  Climate-induced variations in global wildfire danger from 1979 to 2013 , 2015, Nature Communications.

[49]  Xiao-dong Liu,et al.  A Comparative Study on Precipitation Climatology and Interannual Variability in the Lower Midlatitude East Asia and Central Asia , 2014 .

[50]  S. Seneviratne,et al.  Predicting above normal wildfire activity in southern Europe as a function of meteorological drought , 2014 .

[51]  Florian Pappenberger,et al.  Seasonal forecasting of fire over Kalimantan, Indonesia , 2014 .

[52]  Jesús San-Miguel-Ayanz,et al.  Design and function of the European Forest Fire Information System , 2013 .

[53]  Francisco J. Doblas-Reyes,et al.  Seasonal climate predictability and forecasting: status and prospects , 2013 .

[54]  J. Pausas,et al.  The global fire–productivity relationship , 2013 .

[55]  J. San-Miguel-Ayanz,et al.  Analysis of large fires in European Mediterranean landscapes: Lessons learned and perspectives , 2013 .

[56]  R. Seager,et al.  Temperature as a potent driver of regional forest drought stress and tree mortality , 2013 .

[57]  J. Randerson,et al.  Analysis of daily, monthly, and annual burned area using the fourth‐generation global fire emissions database (GFED4) , 2013 .

[58]  J. Pereira,et al.  Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest , 2012 .

[59]  C. Justice,et al.  Regional fire monitoring and characterization using global NASA MODIS fire products in dry lands of Central Asia , 2012, Frontiers of Earth Science.

[60]  V. Kryjov Seasonal climate prediction for North Eurasia , 2012 .

[61]  Yong Xue,et al.  Integration of remote sensing data and surface observations to estimate the impact of the Russian wildfires over Europe and Asia during August 2010 , 2011 .

[62]  J. Randerson,et al.  Forecasting Fire Season Severity in South America Using Sea Surface Temperature Anomalies , 2011, Science.

[63]  Dong Eun Lee,et al.  North Tropical Atlantic influence on western Amazon fire season variability , 2011 .

[64]  H. Juang,et al.  NCEP–ECPC monthly to seasonal US fire danger forecasts , 2010 .

[65]  S. Seneviratne,et al.  Investigating soil moisture-climate interactions in a changing climate: A review , 2010 .

[66]  José Antonio Lozano,et al.  Sensitivity Analysis of k-Fold Cross Validation in Prediction Error Estimation , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[67]  Bin Wang,et al.  An empirical seasonal prediction model of the east Asian summer monsoon using ENSO and NAO , 2009 .

[68]  M. Krawchuk,et al.  Implications of changing climate for global wildland fire , 2009 .

[69]  D. Peterson,et al.  Climate and wildfire area burned in western U.S. ecoprovinces, 1916-2003. , 2009, Ecological applications : a publication of the Ecological Society of America.

[70]  B. Wotton,et al.  Summer Moisture and Wildfire Risks across Canada , 2009 .

[71]  Joshua P. Schwarz,et al.  Biomass burning in Siberia and Kazakhstan as an important source for haze over the Alaskan Arctic in April 2008 , 2009 .

[72]  John W. Benoit,et al.  Wildland fire probabilities estimated from weather model-deduced monthly mean fire danger indices , 2008 .

[73]  Gregory B. Goodrich,et al.  Using Teleconnections to Predict Wildfires in Mississippi , 2008 .

[74]  S. Sitch,et al.  The role of fire disturbance for global vegetation dynamics: coupling fire into a Dynamic Global Vegetation Model , 2008 .

[75]  G. Boer,et al.  The Temporal Variability of Soil Moisture and Surface Hydrological Quantities in a Climate Model , 2006 .

[76]  T. Swetnam,et al.  Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity , 2006, Science.

[77]  H. Douville,et al.  The relative influence of soil moisture and SST in climate predictability explored within ensembles of AMIP type experiments , 2006 .

[78]  W. Bond,et al.  Fire as a global 'herbivore': the ecology and evolution of flammable ecosystems. , 2005, Trends in ecology & evolution.

[79]  R. Burgan,et al.  Seasonal fire danger forecasts for the USA , 2005 .

[80]  José M. C. Pereira,et al.  Synoptic patterns associated with large summer forest fires in Portugal , 2005 .

[81]  D. Lawrence,et al.  Regions of Strong Coupling Between Soil Moisture and Precipitation , 2004, Science.

[82]  Y. Tachibana,et al.  Impact of the wintertime North Atlantic Oscillation (NAO) on the summertime atmospheric circulation , 2003 .

[83]  T. Barnett,et al.  Long lead statistical forecasts of area burned in western U.S. wildfires by ecosystem province , 2002 .

[84]  Matthew D. Collins,et al.  Climate predictability on interannual to decadal time scales: the initial value problem , 2002 .

[85]  M. Andreae,et al.  Emission of trace gases and aerosols from biomass burning , 2001 .

[86]  A. Shabbar,et al.  The Association Between Circulation Anomaliesin the Mid-Troposphere and Area Burnedby Wildland Fire in Canada , 1999 .

[87]  E. Kasischke,et al.  Fire, Global Warming, and the Carbon Balance of Boreal Forests , 1995 .

[88]  B. Holben Characteristics of maximum-value composite images from temporal AVHRR data , 1986 .

[89]  R. Dennis Cook,et al.  Cross-Validation of Regression Models , 1984 .

[90]  E. Neafsey,et al.  Fire in the Earth System , 2009 .