Bayesian nonparametric regression with varying residual density
暂无分享,去创建一个
[1] R. Weiss. An approach to Bayesian sensitivity analysis , 1996 .
[2] J. E. Griffin,et al. Order-Based Dependent Dirichlet Processes , 2006 .
[3] Van Der Vaart,et al. Adaptive Bayesian estimation using a Gaussian random field with inverse Gamma bandwidth , 2009, 0908.3556.
[4] J. Sethuraman. A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .
[5] Andrea Ongaro,et al. Discrete random probability measures: a general framework for nonparametric Bayesian inference☆ , 2004 .
[6] D. Dunson,et al. Nonparametric Bayes Conditional Distribution Modeling With Variable Selection , 2009, Journal of the American Statistical Association.
[7] R. Adler. An introduction to continuity, extrema, and related topics for general Gaussian processes , 1990 .
[8] A. P. Dawid,et al. Regression and Classification Using Gaussian Process Priors , 2009 .
[9] R. Arellano-Valle,et al. Bayesian sensitivity analysis in elliptical linear regression models , 2000 .
[10] Posterior Consistency for some Semi-parametric Problems , 2008 .
[11] David B Dunson,et al. Nonparametric Bayesian models through probit stick-breaking processes. , 2011, Bayesian analysis.
[12] S. Chib,et al. Additive cubic spline regression with Dirichlet process mixture errors , 2010 .
[13] O. Papaspiliopoulos. A note on posterior sampling from Dirichlet mixture models , 2008 .
[14] T. Ferguson. A Bayesian Analysis of Some Nonparametric Problems , 1973 .
[15] Stephen G. Walker,et al. Sampling the Dirichlet Mixture Model with Slices , 2006, Commun. Stat. Simul. Comput..
[16] David B. Dunson,et al. Posterior consistency in conditional distribution estimation , 2013, J. Multivar. Anal..
[17] H. Chipman,et al. BART: Bayesian Additive Regression Trees , 2008, 0806.3286.
[18] M. Escobar,et al. Bayesian Density Estimation and Inference Using Mixtures , 1995 .
[19] Stephen G. Walker,et al. Slice sampling mixture models , 2011, Stat. Comput..
[20] Robert Kohn,et al. Estimation and variable selection in nonparametric heteroscedastic regression , 2003, Stat. Comput..
[21] Malcolm R Leadbetter,et al. Stationary and Related Stochastic Processes: Sample Function Properties and Their Applications , 1967 .
[22] J. Ghosh,et al. Posterior consistency for semi-parametric regression problems , 2003 .
[23] H. Chipman,et al. Bayesian Additive Regression Trees , 2006 .
[24] T. Ferguson. Prior Distributions on Spaces of Probability Measures , 1974 .
[25] S. Ghosal,et al. Kullback Leibler property of kernel mixture priors in Bayesian density estimation , 2007, 0710.2746.
[26] Christopher Holmes,et al. Bayesian Methods for Nonlinear Classification and Regressing , 2002 .
[27] D. Burr,et al. A Bayesian Semiparametric Model for Random-Effects Meta-Analysis , 2005 .
[28] Hani Doss. Bayesian Nonparametric Estimation of the Median; Part I: Computation of the Estimates , 1985 .
[29] Frederick R. Forst,et al. On robust estimation of the location parameter , 1980 .
[30] Audris Mockus,et al. A nonparametric Bayes method for isotonic regression , 1995 .
[31] G. Roberts,et al. Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models , 2007, 0710.4228.
[32] Michael,et al. On a Class of Bayesian Nonparametric Estimates : I . Density Estimates , 2008 .
[33] Lancelot F. James,et al. Gibbs Sampling Methods for Stick-Breaking Priors , 2001 .
[34] M. West. On scale mixtures of normal distributions , 1987 .
[35] Taeryon Choi,et al. Asymptotic properties of posterior distributions in nonparametric regression with non-Gaussian errors , 2009 .
[36] David J. Nott,et al. Semiparametric estimation of mean and variance functions for non-Gaussian data , 2006, Comput. Stat..
[37] D. Dunson,et al. Kernel stick-breaking processes. , 2008, Biometrika.
[38] harald Cramer,et al. Stationary And Related Stochastic Processes , 1967 .
[39] M. Schervish,et al. Posterior Consistency in Nonparametric Regression Problems under Gaussian Process Priors , 2004 .
[40] Justinas Pelenis. Bayesian Semiparametric Regression , 2012 .
[41] N. Pillai,et al. Bayesian density regression , 2007 .
[42] M. Schervish,et al. On posterior consistency in nonparametric regression problems , 2007 .
[43] Jeremy MG Taylor,et al. Robust Statistical Modeling Using the t Distribution , 1989 .
[44] S. Ghosal,et al. Posterior consistency of Gaussian process prior for nonparametric binary regression , 2006, math/0702686.
[45] Jon A. Wellner,et al. Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .
[46] A. Raftery,et al. How Many Iterations in the Gibbs Sampler , 1991 .
[47] S. MacEachern,et al. A semiparametric Bayesian model for randomised block designs , 1996 .
[48] M. Steel,et al. Bayesian nonparametric modelling with the Dirichlet process regression smoother , 2010 .
[49] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[50] Andriy Norets,et al. POSTERIOR CONSISTENCY IN CONDITIONAL DENSITY ESTIMATION BY COVARIATE DEPENDENT MIXTURES , 2011, Econometric Theory.
[51] John Geweke,et al. Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments , 1991 .
[52] A. W. Vaart,et al. Reproducing kernel Hilbert spaces of Gaussian priors , 2008, 0805.3252.
[53] R. Kohn,et al. Locally Adaptive Semiparametric Estimation of the Mean and Variance Functions in Regression Models , 2006 .
[54] Refik Soyer,et al. Bayesian Methods for Nonlinear Classification and Regression , 2004, Technometrics.
[55] M. West. Outlier Models and Prior Distributions in Bayesian Linear Regression , 1984 .
[56] Robert B. Gramacy,et al. Ja n 20 08 Bayesian Treed Gaussian Process Models with an Application to Computer Modeling , 2009 .
[57] P. Müller,et al. Bayesian curve fitting using multivariate normal mixtures , 1996 .
[58] Helio S. Migon,et al. Objective Bayesian analysis for the Student-t regression model , 2008 .
[59] J H Albert,et al. Sequential Ordinal Modeling with Applications to Survival Data , 2001, Biometrics.
[60] Lancelot F. James,et al. Bayesian Inference Via Classes of Normalized Random Measures , 2005, math/0503394.
[61] L. Schwartz. On Bayes procedures , 1965 .
[62] A. Gelfand,et al. Bayesian Semiparametric Median Regression Modeling , 2001 .
[63] Christopher K. I. Williams,et al. Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) , 2005 .