Analyzing the polarization dependence in optical spot-size converter by using a semivectorial finite-element beam propagation method

This paper describes a semivectorial wide-angle finite-element beam propagation method (FE-BPM) that uses the Pade approximation and that can allow efficient and accurate analyzes of the polarization dependence in arbitrary step-index optical waveguide devices. It also reports the use of this method to analyze the polarization dependence of coupling loss between a semiconductor tapered-waveguide spot-size converter and a single-mode optical fiber. It is shown that semiconductor spot-size converters having cores with a small cross-section provide low-loss and polarization-insensitive coupling to flat-end fibers. A low-loss (far less than 1 dB) and completely polarization-insensitive spot-size converter can be made using a lightly n-doped InP substrate for the tapered waveguide. These spot-size converters are consequently potentially useful for making polarization-insensitive semiconductor optical devices such as optical amplifier gate switches.

[1]  K. Petermann,et al.  Series-Expansion-Beam-Propagation-Method for the vector wave equation , 1992 .

[2]  K. Habara,et al.  Photonic ATM switch using frequency-routing-type time-division interconnection network , 1993 .

[3]  C.L. Xu,et al.  A wide-angle vector beam propagation method , 1992, IEEE Photonics Technology Letters.

[4]  O. Mitomi,et al.  An improved semivectorial beam propagation method using a finite-element scheme , 1998, IEEE Photonics Technology Letters.

[5]  Yuichi Tohmori,et al.  Dynamic characteristics of a 1.3 μm laser diode integrated with a spot-size converter coupled to a silica planar lightwave circuit , 1995 .

[6]  O. Mitomi,et al.  Design of a single-mode tapered waveguide for low-loss chip-to-fiber coupling , 1994 .

[7]  R. C. Kistler,et al.  Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon , 1989 .

[8]  U. Koren,et al.  Tapered waveguide InGaAs/InGaAsP multiple-quantum-well lasers , 1990, IEEE Photonics Technology Letters.

[9]  O. Nakajima,et al.  Spot-size converted polarization-insensitive SOA gate with a vertical tapered submicrometer stripe structure , 1998, IEEE Photonics Technology Letters.

[10]  G. R. Hadley,et al.  Multistep method for wide-angle beam propagation. , 1992 .

[11]  H. Melchior,et al.  Vertically tapered InGaAsP/InP waveguides for highly efficient coupling to flat‐end single‐mode fibers , 1994 .

[12]  Luca Vincetti,et al.  Finite-element full-vectorial propagation analysis for three-dimensional z-varying optical waveguides , 1998 .

[13]  A. Carenco,et al.  Quasi planar spot-size transformer for efficient coupling between a cleaved fibre and an InP/InGaAsP rib waveguide , 1994, IEEE Photonics Technology Letters.

[14]  O. Mitomi,et al.  High-coupling efficiency of a 1.3-/spl mu/m spot-size converter integrated laser diode with pn-buried heterostructure for high-temperature operation , 1997 .

[15]  P. Doussiere,et al.  Tapered active stripe for 1.5‐μm InGaAsP/InP strained multiple quantum well lasers with reduced beam divergence , 1994 .

[16]  W. Weiershausen,et al.  Laterally tapered InP-InGaAsP waveguides for low-loss chip-to-fiber butt coupling: a comparison of different configurations , 1995, IEEE Photonics Technology Letters.

[17]  Yasuhiro Kondo,et al.  Monolithically integrated DBR lasers with simple tapered waveguide for low-loss fibre coupling , 1993 .

[18]  O. Mitomi,et al.  A simple laterally tapered waveguide for low-loss coupling to single-mode fibers , 1993, IEEE Photonics Technology Letters.

[19]  Mitsuru Ekawa,et al.  Tapered thickness MQW waveguide BH MQW lasers , 1994, IEEE Photonics Technology Letters.

[20]  Dirk Schulz,et al.  Mixed finite element beam propagation method , 1998 .

[21]  O. Mitomi,et al.  WIDE-ANGLE FINITE-ELEMENT BEAM PROPAGATION METHOD USING PADE APPROXIMATION , 1997 .

[22]  Y. Yamada,et al.  Demonstration of frequency-routing type photonic ATM switch (FRONTIERNET) prototype , 1996, Proceedings of European Conference on Optical Communication.

[23]  M. J. O'Mahony,et al.  Optical amplifiers and their applications , 1989, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[24]  C. T. M. Chang,et al.  GaAs HBT's for high-speed digital integrated circuit applications , 1993 .

[25]  Hideki Fukano,et al.  Optical spot-size converters for low-loss coupling between fibers and optoelectronic semiconductor devices , 1996 .

[26]  Pao-Lo Liu,et al.  Semivectorial beam-propagation method for analyzing polarized modes of rib waveguides , 1992 .

[27]  Youngchul Chung,et al.  An Explicit Finite Difference Wide Angle Beam Propagation Method , 1993 .

[28]  Masanori Koshiba,et al.  Finite element beam propagation method for three-dimensional optical waveguide structures , 1997 .

[30]  C.L. Xu,et al.  A finite-difference vector beam propagation method for three-dimensional waveguide structures , 1992, IEEE Photonics Technology Letters.

[31]  Y. Tohmori,et al.  High temperature operation with low-loss coupling to fibre for narrow-beam 1.3 μm lasers with butt-jointed selective grown spot-size converter , 1995 .

[32]  Akihiro Maruta,et al.  Transparent boundary for the finite-element beam-propagation method. , 1993 .

[33]  M. J. Robertson,et al.  1.56μm InGaAsP/InP tapered active layer multiquantum well laser with improved coupling to cleaved singlemode fibre , 1994 .