Optimization Under Uncertainty Using the Generalized Inverse Distribution Function

A framework for robust optimization under uncertainty based on the use of the generalized inverse distribution function (GIDF), also called quantile function, is here proposed. Compared to more classical approaches that rely on the usage of statistical moments as deterministic attributes that define the objectives of the optimization process, the inverse cumulative distribution function allows for the use of all the possible information available in the probabilistic domain. Furthermore, the use of a quantile based approach leads naturally to a multi-objective methodology which allows an a-posteriori selection of the candidate design based on risk/opportunity criteria defined by the designer. Finally, the error on the estimation of the objectives due to the resolution of the GIDF will be proven to be quantifiable

[1]  Jürgen Teich,et al.  Pareto-Front Exploration with Uncertain Objectives , 2001, EMO.

[2]  Evan J. Hughes,et al.  Evolutionary Multi-objective Ranking with Uncertainty and Noise , 2001, EMO.

[3]  A. V. D. Vaart,et al.  Asymptotic Statistics: Frontmatter , 1998 .

[4]  R. M. Hicks,et al.  Wing Design by Numerical Optimization , 1977 .

[5]  R. Serfling Approximation Theorems of Mathematical Statistics , 1980 .

[6]  Philippe Bouillard,et al.  Multi-Objective Reliability-Based Optimization with Stochastic Metamodels , 2011, Evolutionary Computation.

[7]  Ilya M. Sobol,et al.  A Primer for the Monte Carlo Method , 1994 .

[8]  Fernando P. Bernardo,et al.  Robustness criteria in process design optimization under uncertainty , 1999 .

[9]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[10]  R. Quentin Grafton,et al.  cumulative distribution function , 2012 .

[11]  Domenico Quagliarella,et al.  Inverse and Direct Airfoil Design Using a Multiobjective Genetic Algorithm , 1997 .

[12]  Brian Peacock,et al.  Empirical Distribution Function , 2010 .

[13]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[14]  P. Diaconis,et al.  Computer-Intensive Methods in Statistics , 1983 .

[15]  Massimiliano Vasile,et al.  An evolutionary approach to evidence-based multi-disciplinary robust design optimisation , 2011 .

[16]  Paul Bratley,et al.  Algorithm 659: Implementing Sobol's quasirandom sequence generator , 1988, TOMS.

[17]  David Hinkley,et al.  Bootstrap Methods: Another Look at the Jackknife , 2008 .

[18]  Domenico Quagliarella,et al.  Gas for aerodynamic shape design. II: Multiobjective optimization and multi-criteria design , 2000 .

[19]  A. V. D. Vaart Asymptotic Statistics: Delta Method , 1998 .