The Singular-Vector Structure of the Atmospheric Global Circulation

Abstract The local phase-space instability Of the atmospheric global circulation is Characterized by its (nonmodal) singular vectors. The formalism of singular vector analysis is described. The relations between singular vectors, normal modes, adjoint modes, Lyapunov vectors, perturbations produced by the so-called breeding method, and wave pseudomomentum are outlined. Techniques to estimate the dominant part of the singular spectrum using large-dimensional primitive equation models are discussed. These include the use of forward and adjoint tangent propagators with a Lanczos iterative algorithm. Results are described, based first on statistics of routine calculations made between December 1992 and August 1993, and second on three specific case studies. Results define three dominant geographical areas of instability in the Northern Hemisphere: the two regions of storm track cyclogenesis, and the North African subtropical jet Singular vectors can amplify as much as tenfold over 36 hours, and in winter ther...