Minimax Results on Dense Sets and Dense Families of Functionals

In this paper we deal with minimax results on dense sets. We first study under which conditions the infimum of a function over a dense subset of its domain coincides with the global infimum of that function. Then, we apply our results in order to obtain several minimax results on dense sets. Finally, we obtain the denseness of some parameterized families of functionals in the Banach space of bounded functions and we provide an alternative proof of the famous reflexivity result of James.

[1]  József Kolumbán,et al.  On a generalized sup-inf problem , 1996 .

[2]  Robert E. Megginson An Introduction to Banach Space Theory , 1998 .

[3]  M. Sion On general minimax theorems , 1958 .

[4]  Szilárd László,et al.  Densely Defined Equilibrium Problems , 2014, J. Optim. Theory Appl..

[5]  Szilárd László Vector Equilibrium Problems on Dense Sets , 2016, J. Optim. Theory Appl..

[6]  M. Fabian,et al.  Functional Analysis and Infinite-Dimensional Geometry , 2001 .

[7]  K Fan,et al.  Minimax Theorems. , 1953, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Jonathan M. Borwein,et al.  On Fan's minimax theorem , 1986, Math. Program..

[9]  E. Beckenbach CONVEX FUNCTIONS , 2007 .

[10]  S. Simons Minimax and monotonicity , 1998 .

[11]  Generalized Monotone Operators on Dense Sets , 2013, 1310.4453.

[12]  Stephen Simons,et al.  Minimax Theorems and Their Proofs , 1995 .

[13]  Vicentiu D. Rădulescu,et al.  Set-valued equilibrium problems with applications to Browder variational inclusions and to fixed point theory , 2016 .

[14]  F. Smithies Linear Operators , 2019, Nature.

[15]  J. B. G. Frenk,et al.  Fiscal Decentralization in Mexico: The Bailout Problem , 2002 .

[16]  A new minimax theorem and a perturbed James's theorem , 2002, Bulletin of the Australian Mathematical Society.

[17]  Bastian Goldlücke,et al.  Variational Analysis , 2014, Computer Vision, A Reference Guide.

[18]  P. K. Jain CONVEX FUNCTIONS AND THEIR APPLICATIONS , 1968 .