Glioblastoma Stem Cells Generate Vascular Pericytes to Support Vessel Function and Tumor Growth

[1]  Sean J Morrison,et al.  Cancer stem cells: impact, heterogeneity, and uncertainty. , 2012, Cancer cell.

[2]  K. Ligon,et al.  Neoplastic cells are a rare component in human glioblastoma microvasculature , 2012, Oncotarget.

[3]  B. Zlokovic,et al.  Central nervous system pericytes in health and disease , 2011, Nature Neuroscience.

[4]  D. Hanahan,et al.  Pericytes promote endothelial cell survival through induction of autocrine VEGF-A signaling and Bcl-w expression. , 2011, Blood.

[5]  Rakesh K. Jain,et al.  Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases , 2011, Nature Reviews Drug Discovery.

[6]  R. McLendon,et al.  Nonreceptor tyrosine kinase BMX maintains self-renewal and tumorigenic potential of glioblastoma stem cells by activating STAT3. , 2011, Cancer cell.

[7]  S. Pastorino,et al.  Transdifferentiation of glioblastoma cells into vascular endothelial cells , 2011, Proceedings of the National Academy of Sciences.

[8]  Qiulian Wu,et al.  Deubiquitinase HAUSP Stabilizes REST and Promotes Maintenance of Neural Progenitor Cells , 2010, Nature Cell Biology.

[9]  L. Ricci-Vitiani,et al.  Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells , 2011, Nature.

[10]  Mauro Biffoni,et al.  Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells , 2011, Nature.

[11]  Rong Wang,et al.  Glioblastoma stem-like cells give rise to tumour endothelium , 2010, Nature.

[12]  Bengt R. Johansson,et al.  Pericytes regulate the blood–brain barrier , 2010, Nature.

[13]  Berislav V. Zlokovic,et al.  Pericytes Control Key Neurovascular Functions and Neuronal Phenotype in the Adult Brain and during Brain Aging , 2010, Neuron.

[14]  B. Roysam,et al.  Adult SVZ lineage cells home to and leave the vascular niche via differential responses to SDF1/CXCR4 signaling. , 2010, Cell stem cell.

[15]  D. Hanahan,et al.  Differential Contribution to Neuroendocrine Tumorigenesis of Parallel Egfr Signaling in Cancer Cells and Pericytes , 2010, Genes & cancer.

[16]  S. Gabriel,et al.  Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. , 2010, Cancer cell.

[17]  T. Mikkelsen,et al.  Gliosarcoma Stem Cells Undergo Glial and Mesenchymal Differentiation In Vivo , 2009, Stem cells.

[18]  T. Asahara,et al.  Concurrent Vasculogenesis and Neurogenesis From Adult Neural Stem Cells , 2009, Circulation research.

[19]  P. Wen,et al.  Antiangiogenic therapies for high-grade glioma , 2009, Nature Reviews Neurology.

[20]  Justin C. Grindley,et al.  Tumour-initiating cells: challenges and opportunities for anticancer drug discovery , 2009, Nature Reviews Drug Discovery.

[21]  R. Kerbel,et al.  Glioma tumor stem-like cells promote tumor angiogenesis and vasculogenesis via vascular endothelial growth factor and stromal-derived factor 1. , 2009, Cancer research.

[22]  Hubing Shi,et al.  Overexpression of platelet-derived growth factor-BB increases tumor pericyte content via stromal-derived factor-1alpha/CXCR4 axis. , 2009, Cancer research.

[23]  Hui Wang,et al.  Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. , 2009, Cancer cell.

[24]  E. Holland,et al.  Modeling Adult Gliomas Using RCAS/t-va Technology. , 2009, Translational oncology.

[25]  Masahiro Inoue,et al.  Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. , 2009, Cancer cell.

[26]  M. Shigemori,et al.  Expression of CXCL12 on pseudopalisading cells and proliferating microvessels in glioblastomas: an accelerated growth factor in glioblastomas. , 2009, International journal of oncology.

[27]  R. Thompson,et al.  CXCR4 mediates the proliferation of glioblastoma progenitor cells. , 2009, Cancer letters.

[28]  S. Badylak,et al.  A perivascular origin for mesenchymal stem cells in multiple human organs. , 2008, Cell stem cell.

[29]  Joshua M. Korn,et al.  Comprehensive genomic characterization defines human glioblastoma genes and core pathways , 2008, Nature.

[30]  R. McLendon,et al.  Targeting cancer stem cells through L1CAM suppresses glioma growth. , 2008, Cancer research.

[31]  L. Ricci-Vitiani,et al.  Mesenchymal differentiation of glioblastoma stem cells , 2008, Cell Death and Differentiation.

[32]  G. D. del Zoppo,et al.  The Rapid Decrease in Astrocyte-Associated Dystroglycan Expression by Focal Cerebral Ischemia is Protease-Dependent , 2008, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[33]  S. Vandenberg,et al.  HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. , 2008, Cancer cell.

[34]  K. Nagata,et al.  Expression of smooth muscle cell‐specific proteins in neural progenitor cells induced by agonists of G protein‐coupled receptors and transforming growth factor‐β , 2007, Journal of neurochemistry.

[35]  Tracy T Batchelor,et al.  AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. , 2007, Cancer cell.

[36]  I. Bayazitov,et al.  A perivascular niche for brain tumor stem cells. , 2007, Cancer cell.

[37]  Mark W. Dewhirst,et al.  Glioma stem cells promote radioresistance by preferential activation of the DNA damage response , 2006, Nature.

[38]  Qiulian Wu,et al.  Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. , 2006, Cancer research.

[39]  Steven Song,et al.  The role of pericytes in blood-vessel formation and maintenance. , 2005, Neuro-oncology.

[40]  Luigi Naldini,et al.  Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. , 2005, Cancer cell.

[41]  Z. Werb,et al.  PDGFRβ+ perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival , 2005, Nature Cell Biology.

[42]  D. Hanahan,et al.  Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. , 2003, The Journal of clinical investigation.

[43]  A. Becker,et al.  Analysis of the TP53 gene in laser-microdissected glioblastoma vasculature , 2003, Acta Neuropathologica.

[44]  Rakesh K Jain,et al.  Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. , 2002, The American journal of pathology.

[45]  C. Redies,et al.  N-cadherin mediates pericytic-endothelial interaction during brain angiogenesis in the chicken. , 2000, Developmental dynamics : an official publication of the American Association of Anatomists.

[46]  M. Keogh,et al.  Design of a muscle cell-specific expression vector utilising human vascular smooth muscle α-actin regulatory elements , 1999, Gene Therapy.

[47]  Joshua D. Smith,et al.  Cloning of the Promoter Region of Human Endoglin, the Target Gene for Hereditary Hemorrhagic Telangiectasia Type 1 , 1998 .

[48]  Joshua R. Smith,et al.  Cloning of the promoter region of human endoglin, the target gene for hereditary hemorrhagic telangiectasia type 1. , 1998, Blood.

[49]  N. Kirschbaum,et al.  Characterization of the human platelet/endothelial cell adhesion molecule-1 promoter: identification of a GATA-2 binding element required for optimal transcriptional activity. , 1997, Blood.

[50]  Á. Corbí,et al.  Cloning of the human platelet endothelial cell adhesion molecule-1 promoter and its tissue-specific expression. Structural and functional characterization. , 1996, Journal of immunology.

[51]  Z. Ram,et al.  In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. , 1992, Science.

[52]  Kakunaga Takeo,et al.  Transcriptional regulatory elements in the 5′ upstream and first intron regions of the human smooth muscle (aortic type) α-actin-encoding gene , 1991 .

[53]  D. Paulin,et al.  High level desmin expression depends on a muscle-specific enhancer. , 1990, The Journal of biological chemistry.

[54]  S. Sasayama,et al.  Transcriptional regulatory elements in the 5' upstream and first intron regions of the human smooth muscle (aortic type) alpha-actin-encoding gene. , 1991, Gene.