Automatic identification of terpenoid skeletons through 13C nuclear magnetic resonance data disfunctionalization

Abstract The proposal of this paper is to present a procedure that utilizes 13 C NMR for terpenoid skeletons identification. By this reason, a novel program named REGRAS was developed for the specialist system SISTEMAT. This program carries out an analysis of the 13 C NMR data from a given compound and, from ranges of chemical shifts, recognizes the chemical functions existing on specific positions of carbon skeletons. At the end of this procedure, the program matches the types of carbon atoms obtained against a database, displaying as analysis results the likely skeletons of the questioned substance. The program REGRAS was tested on skeleton elucidation of 35 compounds from the most varied classes of terpenoids, exhibiting excellent results in skeleton prevision precesses.

[1]  J. Bremner,et al.  Rearranged Clerodane Diterpenes from Tinospora baenzigeri , 1999 .

[2]  D. Darnaedi,et al.  Pregnanes and triterpenoid hydroperoxides from the leaves of Aglaia grandis , 1997 .

[3]  K. Siems,et al.  Drimanes from the epicuticular wax of the fern Nephrolepis biserrata , 1996 .

[4]  E. R. Fo,et al.  Norlimonoids from seeds of Toona ciliata , 1998 .

[5]  R. Xu,et al.  Three monoterpenes from Mussaenda pubescens , 1996 .

[6]  Y. Asakawa,et al.  A guaiane-type sesquiterpene, valeracetate from Valeriana officinalis , 1996 .

[7]  Neil A. B. Gray,et al.  Computer-assisted structure elucidation , 1986 .

[8]  M. Jaspars Computer assisted structure elucidation of natural products using two-dimensional NMR spectroscopy† , 1999 .

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  A. Malik,et al.  Ajugin E and F: Two withanolides from Ajuga parviflora , 1999 .

[11]  Y. Takeda,et al.  10-O-acylated iridoid glucosides from leaves of Premna subscandens , 1997 .

[12]  D. Vernon Inform , 1995, Encyclopedia of the UN Sustainable Development Goals.

[13]  S. Öksüz,et al.  Triterpenes of Centaurea ptosimopappoides , 1997 .

[14]  Y. Takeda,et al.  Iridoid glucosides from the leaves and stems of Duranta erecta. , 1995, Phytochemistry.

[15]  D. Moon,et al.  Sesquiterpene lactones from Carpesium triste var. manshuricum , 1999 .

[16]  H. Morita,et al.  Quassinoids from Ailanthus vilmoriniana , 1998 .

[17]  Ahmed Awad E. Ahmed,et al.  Highly oxygenated bisabolenes and an acetylene from Matricaria aurea. , 1999, Phytochemistry.

[18]  Q. Shi,et al.  Two novel pseudoalkaloid taxanes from the Chinese yew, Taxus chinensis var. mairei , 1999 .

[19]  L. Rastrelli,et al.  Polyhydroxylated Triterpenes from Senecio pseudotites. , 1998 .

[20]  P. Torres,et al.  Furanoeremophilane derivatives from Senecio flavus , 1999 .

[21]  O. Gottlieb,et al.  Evolution of quassinoids and limonoids in the Rutales , 1987 .

[22]  J. Gastmans,et al.  Applications D'Intelligence Artificielle Dans La Chimie Organique. XVII. Nouveaux Programmes Du Projet SISTEMAT , 1994 .

[23]  Nanqun Zhu,et al.  Three glucosides from Maytenus ilicifolia , 1998 .

[24]  T. Nohara,et al.  A labdane diterpene glycoside from fruit of Vitex rotundifolia , 1998 .

[25]  N. F. Roque,et al.  Limonoids from Trichilia elegans ssp. elegans , 1997 .

[26]  J. Harmatha,et al.  Ecdysteroid constituents of the mushroom Tapinella panuoides , 1998 .

[27]  W. Berendsohn,et al.  Diterpenes from Euphorbia segetalis , 1998 .

[28]  A. Ahmed,et al.  Carvotacetone derivatives from the Egyptian plant Sphaeranthus suaveolens , 1997 .

[29]  S. Perveen,et al.  Steroidal saponins from Asparagus dumosus. , 1999, Phytochemistry.

[30]  Atta-ur-rahman,et al.  Three withanolides from Withania coagulans , 1999 .

[31]  Joshua Lederberg,et al.  Applications of Artificial Intelligence for Organic Chemistry: The DENDRAL Project , 1980 .

[32]  Ian D. Williams,et al.  Diterpenes and aromatic compounds from Euphorbia fischeriana , 1999 .

[33]  J. P. Gastmans,et al.  A Inteligência Artificial aplicada a Química de Produtos Naturais. O Programa Sistemat. Part I. Bases Teóricas. , 1990 .

[34]  J. Dubois,et al.  Elucidation by progressive intersection of ordered substructures from carbon-13 nuclear magnetic resonance , 1988 .

[35]  J. Darias,et al.  UNCOMMON TETRAHYDROFURAN MONOTERPENES FROM ANTARCTIC PANTONEURA PLOCAMIOIDES , 1996 .

[36]  Morton E. Munk,et al.  Computer prediction of substructures from carbon-13 nuclear magnetic resonance spectra , 1982 .

[37]  G. Guilhon,et al.  Eudesmanolides and epoxycuauthemones from pluchea quitoc , 1998 .

[38]  T. Satou,et al.  Steroidal saponins from the bulbs of Lilium candidum. , 1999, Phytochemistry.

[39]  A. Roberts,et al.  Dictionary of steroids: Chemical data, structures and bibliographies Edited by R. A. Hill, D. N. Kirk, H. L. J. Makin and G. M. Murphy. Chapman and Hall, London, 1991. 2 vols., 1526 pp. $1200.00 (cloth) , 1992, Steroids.

[40]  Ya‐Ching Shen,et al.  Three secoiridoid glucosides from Jasminum lanceolarium , 1997 .

[41]  Sandra A. V. Alvarenga,et al.  Ditregra - an auxiliary program for structural determination of diterpenes , 1997 .

[42]  M. Munk,et al.  The application of two-dimensional nuclear magnetic resonance spectroscopy in computer-assisted structure elucidation , 1987 .

[43]  V. Emerenciano,et al.  Applications of artificial intelligence to structure determination of organic compounds. XX. Determination of groups attached to the skeleton of natural products using 13 C nuclear magnetic resonance spectroscopy , 1997 .

[44]  Suheyla Kirmizigul,et al.  A farnesol derivative from Tanacetum aucheranum , 1997 .

[45]  J. D. Connolly,et al.  Dictionary of terpenoids , 1991 .

[46]  N. Nakamura,et al.  Sesquiterpene lactone glucosides from Sonchus asper. , 2000, Phytochemistry.

[47]  D. L. Nouën,et al.  Ammolactone, a guaianolide from a medicinal plant, Ammodaucus leucotrichus , 1997 .