Molecular Polymorphism and Divergence of Duplicated Genes in Tetraploid African Clawed Frogs (Xenopus)

Genome duplication creates redundancy in proteins and their interaction networks, and subsequent smaller-scale gene duplication can further amplify genetic redundancy. Mutations then lead to the loss, maintenance or functional divergence of duplicated genes. Genome duplication occurred many times in African clawed frogs (genus Xenopus), and almost all extant species in this group evolved from a polyploid ancestor. To better understand the nature of selective constraints in a polyploid genome, we examined molecular polymorphism and divergence of duplicates and single-copy genes in 2 tetraploid African clawed frog species, Xenopus laevis and X. victorianus. We found that molecular polymorphism in the coding regions of putative duplicated genes was higher than in singletons, but not significantly so. Our findings also suggest that transcriptome evolution in polyploids is influenced by variation in the genome-wide mutation rate, and do not reject the hypothesis that gene dosage balance is also important.

[1]  E. Greenbaum,et al.  Pan‐African phylogeography of a model organism, the African clawed frog ‘Xenopus laevis’ , 2015, Molecular ecology.

[2]  B. Charlesworth,et al.  Reduced representation genome sequencing suggests low diversity on the sex chromosomes of tonkean macaque monkeys. , 2014, Molecular biology and evolution.

[3]  Angel Amores,et al.  Stacks: an analysis tool set for population genomics , 2013, Molecular ecology.

[4]  B. Charlesworth,et al.  The Effect of Nonindependent Mate Pairing on the Effective Population Size , 2013, Genetics.

[5]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[6]  Kihoon Yoon,et al.  Before It Gets Started: Regulating Translation at the 5′ UTR , 2012, Comparative and functional genomics.

[7]  Frédéric J. J. Chain,et al.  The odds of duplicate gene persistence after polyploidization , 2011, BMC Genomics.

[8]  A. Amores,et al.  Stacks: Building and Genotyping Loci De Novo From Short-Read Sequences , 2011, G3: Genes | Genomes | Genetics.

[9]  Michaël Bekaert,et al.  Two-Phase Resolution of Polyploidy in the Arabidopsis Metabolic Network Gives Rise to Relative and Absolute Dosage Constraints[W] , 2011, Plant Cell.

[10]  Adam J. Bewick,et al.  EVOLUTION OF THE CLOSELY RELATED, SEX‐RELATED GENES DM‐W AND DMRT1 IN AFRICAN CLAWED FROGS (XENOPUS) , 2011, Evolution; international journal of organic evolution.

[11]  Vaishali Katju,et al.  Genomic and Population-Level Effects of Gene Conversion in Caenorhabditis Paralogs , 2010, Genes.

[12]  Russell B. Fletcher,et al.  The Genome of the Western Clawed Frog Xenopus tropicalis , 2010, Science.

[13]  Serban Nacu,et al.  Fast and SNP-tolerant detection of complex variants and splicing in short reads , 2010, Bioinform..

[14]  B. Charlesworth,et al.  Elements of Evolutionary Genetics , 2010 .

[15]  J. Chris Pires,et al.  Gene and genome duplications: the impact of dosage-sensitivity on the fate of nuclear genes , 2009, Chromosome Research.

[16]  A. Meyer,et al.  The evolutionary significance of ancient genome duplications , 2009, Nature Reviews Genetics.

[17]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[18]  Kenneth H. Wolfe,et al.  Turning a hobby into a job: How duplicated genes find new functions , 2008, Nature Reviews Genetics.

[19]  P. Etter,et al.  Rapid SNP Discovery and Genetic Mapping Using Sequenced RAD Markers , 2008, PloS one.

[20]  Wenfeng Qian,et al.  Gene Dosage and Gene Duplicability , 2008, Genetics.

[21]  K. H. Wolfe,et al.  Preferential subfunctionalization of slow-evolving genes after allopolyploidization in Xenopus laevis , 2008, Proceedings of the National Academy of Sciences.

[22]  B. J. Evans,et al.  Genome evolution and speciation genetics of clawed frogs (Xenopus and Silurana). , 2008, Frontiers in bioscience : a journal and virtual library.

[23]  K. H. Wolfe,et al.  A burst of protein sequence evolution and a prolonged period of asymmetric evolution follow gene duplication in yeast. , 2007, Genome research.

[24]  Erik Segerdell,et al.  Xenbase: a Xenopus biology and genomics resource , 2007, Nucleic Acids Res..

[25]  Paul Richardson,et al.  Accelerated gene evolution and subfunctionalization in the pseudotetraploid frog Xenopus laevis , 2007, BMC Biology.

[26]  Kevin P. Byrne,et al.  Consistent Patterns of Rate Asymmetry and Gene Loss Indicate Widespread Neofunctionalization of Yeast Genes After Whole-Genome Duplication , 2007, Genetics.

[27]  Sarah Barber,et al.  Sequencing and analysis of 10,967 full-length cDNA clones from Xenopus laevis and Xenopus tropicalis reveals post-tetraploidization transcriptome remodeling. , 2006, Genome research.

[28]  Frédéric J. J. Chain,et al.  Multiple Mechanisms Promote the Retained Expression of Gene Duplicates in the Tetraploid Frog Xenopus laevis , 2006, PLoS genetics.

[29]  A. Kondrashov,et al.  Role of selection in fixation of gene duplications. , 2006, Journal of theoretical biology.

[30]  Andrew H Paterson,et al.  Buffering of crucial functions by paleologous duplicated genes may contribute cyclicality to angiosperm genome duplication. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Luca Comai,et al.  The advantages and disadvantages of being polyploid , 2005, Nature Reviews Genetics.

[32]  Thomas D. Wu,et al.  GMAP: a genomic mapping and alignment program for mRNA and EST sequence , 2005, Bioinform..

[33]  D. Kelley,et al.  Evolution of RAG-1 in polyploid clawed frogs. , 2005, Molecular biology and evolution.

[34]  J. Raes,et al.  Modeling gene and genome duplications in eukaryotes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Matthew W. Hahn,et al.  Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks. , 2005, Molecular biology and evolution.

[36]  D. Kelley,et al.  A mitochondrial DNA phylogeny of African clawed frogs: phylogeography and implications for polyploid evolution. , 2004, Molecular phylogenetics and evolution.

[37]  D. Petrov,et al.  Preferential Duplication of Conserved Proteins in Eukaryotic Genomes , 2004, PLoS biology.

[38]  C. Pál,et al.  Dosage sensitivity and the evolution of gene families in yeast , 2003, Nature.

[39]  Ronald W. Davis,et al.  Role of duplicate genes in genetic robustness against null mutations , 2003, Nature.

[40]  E. Koonin,et al.  Selection in the evolution of gene duplications , 2002, Genome Biology.

[41]  A. Force,et al.  The probability of preservation of a newly arisen gene duplicate. , 2001, Genetics.

[42]  M. Lynch,et al.  The evolutionary fate and consequences of duplicate genes. , 2000, Science.

[43]  K. H. Wolfe,et al.  Yeast genome evolution in the post-genome era. , 1999, Current opinion in microbiology.

[44]  A. Force,et al.  Preservation of duplicate genes by complementary, degenerative mutations. , 1999, Genetics.

[45]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[46]  B. Charlesworth,et al.  The effect of deleterious mutations on neutral molecular variation. , 1993, Genetics.

[47]  R. Hudson,et al.  A test of neutral molecular evolution based on nucleotide data. , 1987, Genetics.

[48]  F. Tajima Evolutionary relationship of DNA sequences in finite populations. , 1983, Genetics.

[49]  M. Kimura,et al.  The neutral theory of molecular evolution. , 1983, Scientific American.

[50]  S. Jeffery Evolution of Protein Molecules , 1979 .

[51]  G. A. Watterson On the number of segregating sites in genetical models without recombination. , 1975, Theoretical population biology.

[52]  T. Ohta,et al.  On some principles governing molecular evolution. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Dr. Susumu Ohno Evolution by Gene Duplication , 1970, Springer Berlin Heidelberg.

[54]  Erik Kaestner,et al.  The Origins Of Genome Architecture , 2016 .

[55]  J. Tymowska CHAPTER 12 – Polyploidy and Cytogenetic Variation in Frogs of the Genus Xenopus , 1991 .

[56]  J. Haigh,et al.  The hitch-hiking effect of a favourable gene. , 1974, Genetical research.

[57]  T. Jukes CHAPTER 24 – Evolution of Protein Molecules , 1969 .