Visual Analysis of Biomolecular Cavities: State of the Art

In this report we review and structure the branch of molecular visualization that is concerned with the visual analysis of cavities in macromolecular protein structures. First the necessary background, the domain terminology, and the goals of analytical reasoning are introduced. Based on a comprehensive collection of relevant research works, we present a novel classification for cavity detection approaches and structure them into four distinct classes: grid‐based, Voronoi‐based, surface‐based, and probe‐based methods. The subclasses are then formed by their combinations. We match these approaches with corresponding visualization technologies starting with direct 3D visualization, followed with non‐spatial visualization techniques that for example abstract the interactions between structures into a relational graph, straighten the cavity of interest to see its profile in one view, or aggregate the time sequence into a single contour plot. We also discuss the current state of methods for the visual analysis of cavities in dynamic data such as molecular dynamics simulations. Finally, we give an overview of the most common tools that are actively developed and used in the structural biology and biochemistry research. Our report is concluded by an outlook on future challenges in the field.

[1]  Dario Ghersi,et al.  SITEHOUND-web: a server for ligand binding site identification in protein structures , 2009, Nucleic Acids Res..

[2]  G. R. Smith,et al.  A novel method for structure-based prediction of ion channel conductance properties. , 1997, Biophysical journal.

[3]  B. Wallace,et al.  HOLE: a program for the analysis of the pore dimensions of ion channel structural models. , 1996, Journal of molecular graphics.

[4]  F. Javier Luque,et al.  MDpocket: open-source cavity detection and characterization on molecular dynamics trajectories , 2011, Bioinform..

[5]  Markus A. Lill,et al.  Ensemble Generation and the Influence of Protein Flexibility on Geometric Tunnel Prediction in Cytochrome P450 Enzymes , 2014, PloS one.

[6]  Daniel Baum,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization 2010 Accelerated Visualization of Dynamic Molecular Surfaces , 2022 .

[7]  Thomas Ertl,et al.  Interactive Extraction and Tracking of Biomolecular Surface Features , 2013, Comput. Graph. Forum.

[8]  Amitabh Varshney,et al.  Computing and Displaying Intermolecular Negative Volume for Docking , 2006 .

[9]  H. Edelsbrunner,et al.  Anatomy of protein pockets and cavities: Measurement of binding site geometry and implications for ligand design , 1998, Protein science : a publication of the Protein Society.

[10]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[11]  Michael Gleicher,et al.  Multi-Scale Surface Descriptors , 2009, IEEE Transactions on Visualization and Computer Graphics.

[12]  Jean-Claude Paul,et al.  Intersurf: dynamic interface between proteins. , 2005, Journal of molecular graphics & modelling.

[13]  R. Laskowski SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. , 1995, Journal of molecular graphics.

[14]  Janusz M. Bujnicki,et al.  NPDock: a web server for protein–nucleic acid docking , 2015, Nucleic Acids Res..

[15]  Thomas Ertl,et al.  MegaMol—A Prototyping Framework for Particle-Based Visualization , 2015, IEEE Transactions on Visualization and Computer Graphics.

[16]  Ivan Viola,et al.  MoleCollar and Tunnel Heat Map Visualizations for Conveying Spatio‐Temporo‐Chemical Properties Across and Along Protein Voids , 2015, Comput. Graph. Forum.

[17]  Daniel Baum,et al.  Exploring cavity dynamics in biomolecular systems , 2013, BMC Bioinformatics.

[18]  Ivan Viola,et al.  AnimoAminoMiner: exploration of protein tunnels and their properties in molecular dynamics , 2017 .

[19]  Antonín Pavelka,et al.  CAVER 3.0: A Tool for the Analysis of Transport Pathways in Dynamic Protein Structures , 2012, PLoS Comput. Biol..

[20]  S Subramaniam,et al.  Analytical shape computation of macromolecules: I. molecular area and volume through alpha shape , 1998, Proteins.

[21]  Thomas A. Halgren,et al.  Identifying and Characterizing Binding Sites and Assessing Druggability , 2009, J. Chem. Inf. Model..

[22]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1992, VVS.

[23]  Jirí Sochor,et al.  Computation of Tunnels in Protein Molecules using Delaunay Triangulation , 2007, J. WSCG.

[24]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[25]  Jan Brezovsky,et al.  Software tools for identification, visualization and analysis of protein tunnels and channels. , 2013, Biotechnology advances.

[26]  Janet M. Thornton,et al.  PoreWalker: A Novel Tool for the Identification and Characterization of Channels in Transmembrane Proteins from Their Three-Dimensional Structure , 2009, PLoS Comput. Biol..

[27]  Friedrich Rippmann,et al.  TRAPP: A Tool for Analysis of Transient Binding Pockets in Proteins , 2013, J. Chem. Inf. Model..

[28]  Pieter F. W. Stouten,et al.  Fast prediction and visualization of protein binding pockets with PASS , 2000, J. Comput. Aided Mol. Des..

[29]  Daniel Baum,et al.  Dynamic channels in biomolecular systems: Path analysis and visualization , 2012, 2012 IEEE Symposium on Biological Data Visualization (BioVis).

[30]  Nagasuma R. Chandra,et al.  CHEXVIS: a tool for molecular channel extraction and visualization , 2015, BMC Bioinformatics.

[31]  Jie Liang,et al.  CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues , 2006, Nucleic Acids Res..

[32]  Deok-Soo Kim,et al.  Tunnels and Voids in Molecules via Voronoi Diagrams and Beta-Complexes , 2013, Trans. Comput. Sci..

[33]  R Abagyan,et al.  The contour-buildup algorithm to calculate the analytical molecular surface. , 1996, Journal of structural biology.

[34]  Philipp Slusallek,et al.  Measuring properties of molecular surfaces using ray casting , 2010, 2010 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW).

[35]  Thomas Ertl,et al.  Comparative Visualization of Molecular Surfaces Using Deformable Models , 2014, Comput. Graph. Forum.

[36]  Weiru Wang,et al.  Targeting protein-protein interaction by small molecules. , 2014, Annual review of pharmacology and toxicology.

[37]  Christian Kandt,et al.  dxTuber: detecting protein cavities, tunnels and clefts based on protein and solvent dynamics. , 2011, Journal of molecular graphics & modelling.

[38]  D. Levitt,et al.  POCKET: a computer graphics method for identifying and displaying protein cavities and their surrounding amino acids. , 1992, Journal of molecular graphics.

[39]  Herbert Edelsbrunner,et al.  Deformable Smooth Surface Design , 1999, Discret. Comput. Geom..

[40]  Adam Jurcík,et al.  Accelerated visualization of transparent molecular surfaces in molecular dynamics , 2016, 2016 IEEE Pacific Visualization Symposium (PacificVis).

[41]  Sheng-You Huang,et al.  Search strategies and evaluation in protein-protein docking: principles, advances and challenges. , 2014, Drug discovery today.

[42]  Herbert Edelsbrunner,et al.  Measuring proteins and voids in proteins , 1995, Proceedings of the Twenty-Eighth Annual Hawaii International Conference on System Sciences.

[43]  Klaus Schulten,et al.  Fast Visualization of Gaussian Density Surfaces for Molecular Dynamics and Particle System Trajectories , 2012, EuroVis.

[44]  Deok-Soo Kim,et al.  BetaCavityWeb: a webserver for molecular voids and channels , 2015, Nucleic Acids Res..

[45]  Bingding Huang,et al.  MetaPocket: a meta approach to improve protein ligand binding site prediction. , 2009, Omics : a journal of integrative biology.

[46]  José Xavier-Neto,et al.  KVFinder: steered identification of protein cavities as a PyMOL plugin , 2014, BMC Bioinformatics.

[47]  Yong Zhou,et al.  Roll: a new algorithm for the detection of protein pockets and cavities with a rolling probe sphere , 2010, Bioinform..

[48]  Ivan Viola,et al.  Visual cavity analysis in molecular simulations , 2013, BMC Bioinformatics.

[49]  Thierry Siméon,et al.  A path planning approach for computing large-amplitude motions of flexible molecules , 2005, ISMB.

[50]  Sandor Vajda,et al.  CAPRI: A Critical Assessment of PRedicted Interactions , 2003, Proteins.

[51]  Gábor Czirják,et al.  PrinCCes: Continuity-based geometric decomposition and systematic visualization of the void repertoire of proteins. , 2015, Journal of molecular graphics & modelling.

[52]  M. Sanner,et al.  Reduced surface: an efficient way to compute molecular surfaces. , 1996, Biopolymers.

[53]  Michael Gleicher,et al.  Molecular Surface Abstraction , 2007, IEEE Transactions on Visualization and Computer Graphics.

[54]  M. Nilges,et al.  Principal Component Analysis reveals correlation of cavities evolution and functional motions in proteins. , 2015, Journal of molecular graphics & modelling.

[55]  B. Wallace,et al.  The pore dimensions of gramicidin A. , 1993, Biophysical journal.

[56]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[57]  Georgios Iakovou,et al.  A real-time proximity querying algorithm for haptic-based molecular docking. , 2014, Faraday discussions.

[58]  Talha Bin Masood,et al.  Extraction of Robust Voids and Pockets in Proteins , 2013, Visualization in Medicine and Life Sciences III.

[59]  Victor Guallar,et al.  Ligand Binding Mechanism in Steroid Receptors: From Conserved Plasticity to Differential Evolutionary Constraints. , 2015, Structure.

[60]  R. Abagyan,et al.  Pocketome via Comprehensive Identification and Classification of Ligand Binding Envelopes* , 2005, Molecular & Cellular Proteomics.

[61]  Peter J Bond,et al.  Efficient Characterization of Protein Cavities within Molecular Simulation Trajectories: trj_cavity. , 2014, Journal of chemical theory and computation.

[62]  Eyke Hüllermeier,et al.  Functional Classification of Protein Kinase Binding Sites Using Cavbase , 2007, ChemMedChem.

[63]  Herbert Edelsbrunner,et al.  On the Definition and the Construction of Pockets in Macromolecules , 1998, Discret. Appl. Math..

[64]  Zoran Obradovic,et al.  DisProt: the Database of Disordered Proteins , 2006, Nucleic Acids Res..

[65]  Ruben Abagyan,et al.  Pocketome: an encyclopedia of small-molecule binding sites in 4D , 2011, Nucleic Acids Res..

[66]  Antonín Pavelka,et al.  CAVER Analyst 1.0: graphic tool for interactive visualization and analysis of tunnels and channels in protein structures , 2014, Bioinform..

[67]  Martin Falk,et al.  Interactive Exploration of Protein Cavities , 2011, Comput. Graph. Forum.

[68]  Matthieu Chavent,et al.  Epock: rapid analysis of protein pocket dynamics , 2014, Bioinform..

[69]  Matthias Keil,et al.  Identifification of Substrate Channels and Protein Cavities , 1998 .

[70]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[71]  Chris Sander,et al.  The double cubic lattice method: Efficient approaches to numerical integration of surface area and volume and to dot surface contouring of molecular assemblies , 1995, J. Comput. Chem..

[72]  Rebecca C Wade,et al.  Ligand tunnels in T. brucei and human CYP51: Insights for parasite-specific drug design. , 2016, Biochimica et biophysica acta.

[73]  Paolo Cignoni,et al.  Ambient Occlusion and Edge Cueing for Enhancing Real Time Molecular Visualization , 2006, IEEE Transactions on Visualization and Computer Graphics.

[74]  Timo Ropinski,et al.  Real-Time Molecular Visualization Supporting Diffuse Interreflections and Ambient Occlusion , 2016, IEEE Transactions on Visualization and Computer Graphics.

[75]  K. Sharp,et al.  Travel depth, a new shape descriptor for macromolecules: application to ligand binding. , 2006, Journal of molecular biology.

[76]  Ivan Viola,et al.  Implicit surfaces for interactive graph based cavity analysis of molecular simulations , 2012, 2012 IEEE Symposium on Biological Data Visualization (BioVis).

[77]  Thomas Steinke,et al.  The MoSGrid - e-science gateway: molecular simulations in a distributed computing environment , 2013, Journal of Cheminformatics.

[78]  S. LaValle Rapidly-exploring random trees : a new tool for path planning , 1998 .

[79]  Richard M. Jackson,et al.  Q-fit: A probabilistic method for docking molecular fragments by sampling low energy conformational space , 2002, J. Comput. Aided Mol. Des..

[80]  David S. Ebert,et al.  Multi-modal perceptualization of volumetric data and its application to molecular docking , 2005, First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics Conference.

[81]  Antonín Pavelka,et al.  HotSpot Wizard: a web server for identification of hot spots in protein engineering , 2009, Nucleic Acids Res..

[82]  M. Schroeder,et al.  LIGSITEcsc: predicting ligand binding sites using the Connolly surface and degree of conservation , 2006, BMC Structural Biology.

[83]  T. Kawabata Detection of multiscale pockets on protein surfaces using mathematical morphology , 2010, Proteins.

[84]  G J Kleywegt,et al.  Detection, delineation, measurement and display of cavities in macromolecular structures. , 1994, Acta crystallographica. Section D, Biological crystallography.

[85]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[86]  Thomas Ertl,et al.  Parallel Contour-Buildup algorithm for the molecular surface , 2011, 2011 IEEE Symposium on Biological Data Visualization (BioVis)..

[87]  Thomas Ertl,et al.  Visual Analysis of Dynamic Protein Cavities and Binding Sites , 2014, 2014 IEEE Pacific Visualization Symposium.

[88]  Mona Singh,et al.  Predicting Protein Ligand Binding Sites by Combining Evolutionary Sequence Conservation and 3D Structure , 2009, PLoS Comput. Biol..

[89]  Antonín Pavelka,et al.  CAVER: Algorithms for Analyzing Dynamics of Tunnels in Macromolecules , 2016, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[90]  Bosco K. Ho,et al.  HOLLOW: Generating Accurate Representations of Channel and Interior Surfaces in Molecular Structures , 2008, BMC Structural Biology.

[91]  K. Sharp,et al.  Finding and characterizing tunnels in macromolecules with application to ion channels and pores. , 2009, Biophysical journal.

[92]  Young J. Kim,et al.  GPU Accelerated Finding of Channels and Tunnels for a Protein Molecule , 2014, International Journal of Parallel Programming.

[93]  Ivan Viola,et al.  Visualization of Biomolecular Structures: State of the Art , 2015, EuroVis.

[94]  M. Mezei,et al.  Molecular docking: a powerful approach for structure-based drug discovery. , 2011, Current computer-aided drug design.

[95]  J. Weinstein,et al.  Molecular interaction maps of bioregulatory networks: a general rubric for systems biology. , 2005, Molecular biology of the cell.

[96]  G. Schneider,et al.  PocketPicker: analysis of ligand binding-sites with shape descriptors , 2007, Chemistry Central Journal.

[97]  G. Ullmann,et al.  McVol - A program for calculating protein volumes and identifying cavities by a Monte Carlo algorithm , 2010, Journal of molecular modeling.

[98]  D. van der Spoel,et al.  GROMACS: A message-passing parallel molecular dynamics implementation , 1995 .

[99]  Stefano Alcaro,et al.  A Pipeline To Enhance Ligand Virtual Screening: Integrating Molecular Dynamics and Fingerprints for Ligand and Proteins , 2015, J. Chem. Inf. Model..

[100]  Ivan Viola,et al.  Visualization of Biomolecular Structures: State of the Art Revisited , 2017, Comput. Graph. Forum.

[101]  Maciej Haranczyk,et al.  Navigating molecular worms inside chemical labyrinths , 2009, Proceedings of the National Academy of Sciences.

[102]  M Hendlich,et al.  LIGSITE: automatic and efficient detection of potential small molecule-binding sites in proteins. , 1997, Journal of molecular graphics & modelling.

[103]  Daniel Baum,et al.  Voronoi-Based Extraction and Visualization of Molecular Paths , 2011, IEEE Transactions on Visualization and Computer Graphics.

[104]  Karel Berka,et al.  MOLEonline 2.0: interactive web-based analysis of biomacromolecular channels , 2012, Nucleic Acids Res..

[105]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[106]  Thérèse Vachon,et al.  Development and tuning of an original search engine for patent libraries in medicinal chemistry , 2014, BMC Bioinformatics.

[107]  A. Dunker,et al.  Understanding protein non-folding. , 2010, Biochimica et biophysica acta.

[108]  Vincent Le Guilloux,et al.  Fpocket: An open source platform for ligand pocket detection , 2009, BMC Bioinformatics.

[109]  Karel Berka,et al.  MOLE 2.0: advanced approach for analysis of biomacromolecular channels , 2013, Journal of Cheminformatics.

[110]  Walter Filgueira de Azevedo,et al.  Molecular docking algorithms. , 2008, Current drug targets.

[111]  Bernd Hamann,et al.  Segmenting molecular surfaces , 2006, Comput. Aided Geom. Des..

[112]  E. Fischer Einfluss der Configuration auf die Wirkung der Enzyme , 1894 .

[113]  H Edelsbrunner,et al.  Analytical shape computation of macromolecules: II. Inaccessible cavities in proteins , 1998, Proteins.

[114]  Tom Halgren,et al.  New Method for Fast and Accurate Binding‐site Identification and Analysis , 2007, Chemical biology & drug design.

[115]  G. Vriend,et al.  A very fast program for visualizing protein surfaces, channels and cavities. , 1989, Journal of molecular graphics.

[116]  Kengo Kinoshita,et al.  Development of new indices to evaluate protein-protein interfaces: assembling space volume, assembling space distance, and global shape descriptor. , 2009, Journal of molecular graphics & modelling.

[117]  Gert Vriend,et al.  YASARA View—molecular graphics for all devices—from smartphones to workstations , 2014, Bioinform..

[118]  Thierry Siméon,et al.  Encoding molecular motions in voxel maps , 2009, 2009 IEEE International Conference on Robotics and Automation.

[119]  Thomas Ertl,et al.  Object-space ambient occlusion for molecular dynamics , 2012, 2012 IEEE Pacific Visualization Symposium.

[120]  Benoit M. Macq,et al.  Fast Surface-Based Travel Depth Estimation Algorithm for Macromolecule Surface Shape Description , 2011, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[121]  Jacob D. Durrant,et al.  POVME: an algorithm for measuring binding-pocket volumes. , 2011, Journal of molecular graphics & modelling.

[122]  R C Wade,et al.  MolSurfer: two-dimensional maps for navigating three-dimensional structures of proteins. , 1999, Trends in biochemical sciences.

[123]  Jaroslav Koca,et al.  MOLE: a Voronoi diagram-based explorer of molecular channels, pores, and tunnels. , 2007, Structure.

[124]  Mark Gerstein,et al.  3V: cavity, channel and cleft volume calculator and extractor , 2010, Nucleic Acids Res..

[125]  H. Wolfson,et al.  MolAxis: Efficient and accurate identification of channels in macromolecules , 2008, Proteins.

[126]  Mona Singh,et al.  Predicting functionally important residues from sequence conservation , 2007, Bioinform..

[127]  Yu Li,et al.  Identification of cavities on protein surface using multiple computational approaches for drug binding site prediction , 2011, Bioinform..

[128]  Kliment Olechnovic,et al.  Voroprot: an interactive tool for the analysis and visualization of complex geometric features of protein structure , 2011, Bioinform..

[129]  Jaroslav Koca,et al.  CAVER: a new tool to explore routes from protein clefts, pockets and cavities , 2006, BMC Bioinformatics.

[130]  Daniel Baum,et al.  Ligand Excluded Surface: A New Type of Molecular Surface , 2014, IEEE Transactions on Visualization and Computer Graphics.

[131]  Didier Devaurs,et al.  MoMA-LigPath: a web server to simulate protein–ligand unbinding , 2013, Nucleic Acids Res..

[132]  Richard M. Jackson,et al.  Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites , 2005, Bioinform..

[133]  Ruth Nussinov,et al.  MIMTool: A Tool for Drawing Molecular Interaction Maps , 2014, ArXiv.

[134]  Rommie E. Amaro,et al.  POVME 2.0: An Enhanced Tool for Determining Pocket Shape and Volume Characteristics , 2014, Journal of chemical theory and computation.

[135]  Michael Krone,et al.  Visualising intrinsic disorder and conformational variation in protein ensembles. , 2014, Faraday discussions.

[136]  Michael Gleicher,et al.  Local functional descriptors for surface comparison based binding prediction , 2012, BMC Bioinformatics.