A behavioural analysis of colour vision in the antCataglyphis bicolor (Formicidae, Hymenoptera)

SummaryThe colour vision of worker antsCataglyphis bicolor was investigated by means of a colour mixture apparatus (Fig. 1). In freely walking ants the spontaneous phototactic choice behaviour as well as the choice behaviour after previous training to monochromatic or white light stimuli were tested in the spectral range 320≦λ≦ 627 nm. For all wavelengths standard intensities (I0.5) were used that caused equal attractiveness and thus exhibited equal subjective brightness for the ants.1.The spectral sensitivity function of the spontaneous phototactic choice behaviour is characterised by four peaks (λmax=342, 425, 505, and 570 nm). The relative heights of the peaks are about 5.5∶1.0∶1.0∶0.5, respectively (Fig. 5).2.The visual system of the ant can selectively be adapted to all four ranges which the ant is maximally sensitive to (Fig. 6). The difference spectrum in Fig. 7 shows the spectral sensitivity curve of the postulated long-wavelength receptor type (λmax=570 nm).3.A wavelength discrimination function was obtained by means of training experiments. It is characterised by three maxima (λmax=382, 449, and 550 nm). The accuracy of discrimination varies as follows: 382>449>550 nm (Fig. 8).4.Spectral lights ofλmax=342, 434, and 506 nm appear to the ants as maximally saturated hues. The yellow range seems to be moderately saturated (Fig. 9).5.Colour mixture experiments show that the hue continuously varies along the wavelength scale and that the spectral range which the ant is sensitive to is closed via the ant-purple range (Fig. 10).6.All 16 tested monochromatic lights and antpurple are distinctly discriminated from a white light stimulus, i.e. a “white instance” also exists in the ant's colour vision system.7.Four pairs of complementary colours were tested, including ant-purple. Complementary colours are the wavelengths 342 and 504, 434 and 574, 382 and 550, 351/574 and 449 nm when presented by the relative intensities 0.37 to 0.63, 0.32 to 0.68, 0.25 to 0.75, and 0.25/0.25 to 0.50, respectively (Fig. 13).8.The hypothesis of a tetrachromatic colour vision system in the antCataglyphis bicolor is tentatively discussed. Four spectral types of receptors are postulated (R345, R430, r505 and r570) and different possibilities of how to build a yellow receptor (R570) are considered. A hypothetical chromaticity diagram is proposed (Fig. 17).

[1]  John Lubbock Ameisen, Bienen und Wespen : Beobachtungen uber die Lebensweise der Geselligen Hymenopteren , 1883 .

[2]  K. Frisch Der Farbensinn und Formensinn der Biene , 1914 .

[3]  M. Hertz New Experiments on Colour Vision in Bees , 1939 .

[4]  H. Dartnall,et al.  The interpretation of spectral sensitivity curves. , 1953, British medical bulletin.

[5]  D. Jameson,et al.  Some Quantitative Aspects of an Opponent-Colors Theory. I. Chromatic Responses and Spectral Saturation , 1955 .

[6]  D. Burkhardt Colour Discrimination in Insects , 1964 .

[7]  W. B. Marks,et al.  Visual pigments of single goldfish cones , 1965, The Journal of physiology.

[8]  T. Goldsmith Do Flies Have A Red Receptor? , 1965, The Journal of general physiology.

[9]  J. J. Wolken,et al.  An Action Spectrum for the Fire Ant (Solenopsis saevissima) , 1965, Nature.

[10]  K. Naka,et al.  S‐potentials from colour units in the retina of fish (Cyprinidae) , 1966, The Journal of physiology.

[11]  D. Yager Behavioral measures and theoretical analysis of spectral sensitivity and spectral saturation in the goldfish, Carassius auratus. , 1967, Vision research.

[12]  S. D. Carlson,et al.  Microspectrophotometry of the dioptric apparatus and compound rhabdom of the moth (Manduca sexta) eye. , 1972, Journal of insect physiology.

[13]  W. Muntz Inert Absorbing and Reflecting Pigments , 1972 .

[14]  Marianne Drrscheidt-Kfer Die Empfindlichkeit einzelner Photorezeptoren im Komplexauge vonCalliphora erythrocephala@@@The sensitivity of single visual receptors in the compound eye of the blowflyCalliphora erythrocephala , 1972 .

[15]  D W Arnett,et al.  Spatial and temporal integration properties of units in first optic ganglion of dipterans. , 1972, Journal of neurophysiology.

[16]  Hansjochem Autrum,et al.  Comparative Physiology of Colour Vision in Animals , 1973 .

[17]  R. W. Rodieck The vertebrate retina : principles of structure and function , 1973 .

[18]  Gary D. Bernard,et al.  THE VISUAL SYSTEM OF INSECTS , 1974 .

[19]  Dr. Willi A. Ribi,et al.  The Neurons of the First Optic Ganglion of the Bee (Apis mellifera) , 1975, Advances in Anatomy, Embryology and Cell Biology / Ergebnisse der Anatomie und Entwicklungsgeschichte / Revues d’anatomie et de morphologie expérimentale.

[20]  K. Hamdorf Primärprozesse beim Sehen der Wirbellosen , 1975 .

[21]  Simon B. Laughlin,et al.  Receptor Function in the Apposition Eye — An Electrophysiological Approach , 1975 .

[22]  R. Hardie Electrophysiological Properties of R7 and R8 in Dipteran Retina , 1977 .

[23]  T. Goldsmith The effects of screening pigments on the spectral sensitivity of some crustacea with scotopic (superposition) eyes , 1978, Vision Research.

[24]  Jacob Kiepenheuer Farbunterscheidungsvermögen bei der roten Waldameise Formica polyctena Förster , 1968, Zeitschrift für vergleichende Physiologie.

[25]  R. Wehner,et al.  Verhaltensphysiologischer Nachweis des Farbensehens beiCataglyphis bicolor (Formicidae, Hymenoptera) , 1972, Journal of comparative physiology.

[26]  Allan W. Snyder,et al.  Polarised light detection in the bee,Apis mellifera , 1974, Journal of comparative physiology.

[27]  P. Bruckmoser Die spektrale Empfindlichkeit einzelner Sehzellen des Rückenschwimmers Notonecta glauca L. (Heteroptera) , 1968, Zeitschrift für vergleichende Physiologie.

[28]  Otto von Helversen,et al.  Zur spektralen Unterschiedsempfindlichkeit der Honigbiene , 1972, Journal of comparative physiology.

[29]  N. Franceschini,et al.  A photostable pigment within the rhabdomere of fly photoreceptors no. 7 , 1978, Journal of comparative physiology.

[30]  H. Autrum,et al.  Die spektrale Empfindlichkeit einzelner Sehzellen des Bienenauges , 1964, Zeitschrift für vergleichende Physiologie.

[31]  A. Kühn Über den Farbensinn der Bienen , 1927, Zeitschrift für vergleichende Physiologie.

[32]  Karl Daumer,et al.  Reizmetrische Untersuchung des Farbensehens der Bienen , 1956, Zeitschrift für vergleichende Physiologie.

[33]  R. Wehner,et al.  Die Sehfelder der zentralen Ommatidien in den Appositionsaugen von Apis mellifica und Cataglyphis bicolor (Apidae, Formicidae; Hymenoptera) , 1972, Kybernetik.

[34]  R. Menzel,et al.  Colour receptors in the bee eye — Morphology and spectral sensitivity , 1976, Journal of comparative physiology.

[35]  R. Menzel,et al.  Pigment movement during light and chromatic adaptation in the retinula cells ofFormica polyctena (Hymenoptera, Formicidae) , 1973, Journal of comparative physiology.

[36]  R. Menzel,et al.  Chromatic properties of interneurons in the optic lobes of the bee , 1977, Journal of comparative physiology.

[37]  H. Autrum,et al.  Selektive Adaptation und Pigmentwanderung in den Sehzellen des Bienenauges , 1974, Journal of comparative physiology.

[38]  R. Menzel Spectral sensitivity of monopolar cells in the bee lamina , 1974, Journal of comparative physiology.

[39]  K. Kirschfeld,et al.  Ein Mechanismus zur Steuerung des Lichtflusses in den Rhabdomeren des Komplexauges von Musca , 1969, Kybernetik.

[40]  W. Kaiser,et al.  The participation of all three colour receptors in the phototactic behaviour of fixed walking honeybees , 2004, Journal of comparative physiology.

[41]  T. Labhart Behavioral analysis of light intensity discrimination and spectral sensitivity in the honey bee,Apis mellifera , 1974, Journal of comparative physiology.

[42]  S. Laughlin Neural integration in the first optic neuropile of dragonflies , 2004, Journal of comparative physiology.

[43]  P. Herrling Regional distribution of three ultrastructural retinula types in the retina of Cataglyphis bicolor Fabr. (Formicidae, Hymenoptera) , 1976, Cell and Tissue Research.

[44]  Matti Järvilehto,et al.  Localized intracellular potentials from pre- and postsynaptic components in the external plexiform layer of an insect retina , 1971, Zeitschrift für vergleichende Physiologie.

[45]  S. Laughlin,et al.  Structure and function of the fused rhabdom , 1973, Journal of comparative physiology.

[46]  E. Heintz La question de la sensibilité des Abeilles A l'ultra-violet , 1959, Insectes Sociaux.

[47]  S. Yamashita,et al.  Spectral sensitivities of jumping spider eyes , 1976, Journal of comparative physiology.