The Hybrid Sensor Bus is a space-borne temperature monitoring system for telecommunication satellites com bining electrical and fiber-optical Fiber Bragg Grating (FBG) sensors. Currently, there is no method available for testing the functionality and robustness of the system without setting up an actual sensor-network implying numerous FBG sensors in which each has to be heated/cooled individually. As a verification method of the mentioned system, FBG reflection based scanning laser interrogator, an FBG emulator is implemented to emulate the necessary FBG sensors. It is capable of immediate emulation of any given FBG spectrum, thus, any temperature. The concept provides advantages like emulating different kinds of FBGs with any peak shape, variable Bragg-wavelength λB, maximal-reflectivity τmax, spectral-width and degradation characteristics. Further, it facilitates an efficient evaluation of different interrogator peak-finding algorithms and the capability of emulating up to 10000 sample points per second is achieved. In the present paper, different concepts will be discussed and evaluated yielding to the implementation of a Variable Optical Attenuator (VOA) as the main actuator of the emulator. The actuator choice is further restricted since the emulator has to work with light in unknown polarization state. In order to implement a fast opto-ceramic VOA, issues like temperature dependencies, up to 200 V driving input and capacitive load have to be overcome. Furthermore, a self-calibration procedure mitigates problems like attenuation losses and long-term drift.
[1]
E.L. Wooten,et al.
A review of lithium niobate modulators for fiber-optic communications systems
,
2000,
IEEE Journal of Selected Topics in Quantum Electronics.
[2]
W. Graham Richards,et al.
Art of electronics
,
1983,
Nature.
[3]
Stephen Cohen,et al.
Novel VOAs provide more speed and utility
,
2000
.
[4]
Alexander W. Koch,et al.
Fiber-Optic Sensor Interrogation Based on a Widely Tunable Monolithic Laser Diode
,
2010,
IEEE Transactions on Instrumentation and Measurement.
[5]
Alexander W. Koch,et al.
A space-borne fiber-optic interrogator module based on narrow-band tunable laser diode for temperature monitoring in telecommunication satellites
,
2013,
Optical Metrology.
[6]
Zhiqiang Zheng,et al.
Transparent electro-optic ceramics and devices
,
2005,
SPIE/COS Photonics Asia.
[7]
T. Erdogan.
Fiber grating spectra
,
1997
.