Explicit Robin–Neumann schemes for the coupling of incompressible fluids with thin-walled structures
暂无分享,去创建一个
Marina Vidrascu | Miguel Angel Fernández | M. Vidrascu | Miguel A. Fernández | J. Mullaert | Jimmy Mullaert
[1] M. Heil. An efficient solver for the fully-coupled solution of large-displacement fluid-structure interaction problems , 2004 .
[2] Dominique Chapelle,et al. MODELING OF THE INCLUSION OF A REINFORCING SHEET WITHIN A 3D MEDIUM , 2003 .
[3] W. Wall,et al. A Solution for the Incompressibility Dilemma in Partitioned Fluid–Structure Interaction with Pure Dirichlet Fluid Domains , 2006 .
[4] Miguel Angel Fernández,et al. A Newton method using exact jacobians for solving fluid-structure coupling , 2005 .
[5] Miguel Angel Fern. Incremental displacement-correction schemes for incompressible uid-structure interaction: stability and convergence analysis , 2013 .
[6] J. Z. Zhu,et al. The finite element method , 1977 .
[7] Frédéric Hecht,et al. New development in freefem++ , 2012, J. Num. Math..
[8] E. D. Langre,et al. Fluid-Structure Interactions: Cross-Flow-Induced Instabilities , 2010 .
[9] C. Peskin. The immersed boundary method , 2002, Acta Numerica.
[10] Gianluigi Rozza,et al. Numerical Simulation of Sailing Boats: Dynamics, FSI, and Shape Optimization , 2012 .
[11] Suncica Canic,et al. Modeling Viscoelastic Behavior of Arterial Walls and Their Interaction with Pulsatile Blood Flow , 2006, SIAM J. Appl. Math..
[12] R. Rannacher,et al. Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: error estimates for second-order time discretization , 1990 .
[13] L. Heltai,et al. Mathematical Models and Methods in Applied Sciences Vol. 17, No. 10 (17) 1479–1505 c ○ World Scientific Publishing Company NUMERICAL STABILITY OF THE FINITE ELEMENT IMMERSED BOUNDARY METHOD , 2005 .
[14] S. R. Parks,et al. Evolution of the wall shear stresses during the progressive enlargement of symmetric abdominal aortic aneurysms , 2006, Journal of Fluid Mechanics.
[15] Erik Burman,et al. Stabilized explicit coupling for fluid-structure interaction using Nitsche s method , 2007 .
[16] Marina Vidrascu,et al. Generalized Robin–Neumann explicit coupling schemes for incompressible fluid‐structure interaction: Stability analysis and numerics , 2015 .
[17] Wolfgang A. Wall,et al. Parallel multilevel solution of nonlinear shell structures , 2005 .
[18] Miguel Angel Fernández,et al. Incremental displacement-correction schemes for the explicit coupling of a thin structure with an incompressible fluid , 2011 .
[19] Annalisa Quaini,et al. Fluid-structure interaction in blood flow capturing non-zero longitudinal structure displacement , 2012, J. Comput. Phys..
[20] Long Chen. FINITE ELEMENT METHOD , 2013 .
[21] F. Brezzi,et al. On the Stabilization of Finite Element Approximations of the Stokes Equations , 1984 .
[22] P. Tallec,et al. Fluid structure interaction with large structural displacements , 2001 .
[23] A. Quarteroni,et al. Fluid–structure algorithms based on Steklov–Poincaré operators , 2006 .
[24] Erik Burman,et al. Stabilization of explicit coupling in fluid-structure interaction involving fluid incompressibility , 2009 .
[25] W. Wall,et al. Fixed-point fluid–structure interaction solvers with dynamic relaxation , 2008 .
[26] A. Quarteroni,et al. On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels , 2001 .
[27] Miguel A. Fernández,et al. Robin Based Semi-Implicit Coupling in Fluid-Structure Interaction: Stability Analysis and Numerics , 2009, SIAM J. Sci. Comput..
[28] A. Quarteroni,et al. A SEMI-IMPLICIT APPROACH FOR FLUID-STRUCTURE INTERACTION BASED ON AN ALGEBRAIC FRACTIONAL STEP METHOD , 2007 .
[29] Roland Glowinski,et al. Stable loosely-coupled-type algorithm for fluid-structure interaction in blood flow , 2009, J. Comput. Phys..
[30] Charles S. Peskin,et al. Stability and Instability in the Computation of Flows with Moving Immersed Boundaries: A Comparison of Three Methods , 1992, SIAM J. Sci. Comput..
[31] Peter Hansbo,et al. Nitsche's method for interface problems in computa‐tional mechanics , 2005 .
[32] Fabio Nobile,et al. Partitioned Algorithms for Fluid-Structure Interaction Problems in Haemodynamics , 2012, Milan Journal of Mathematics.
[33] D. Chapelle,et al. The Finite Element Analysis of Shells - Fundamentals , 2003 .
[34] Damodar Maity,et al. Effect of baffles on a partially filled cubic tank: Numerical simulation and experimental validation , 2009 .
[35] W. Wall,et al. Truly monolithic algebraic multigrid for fluid–structure interaction , 2011 .
[36] E. Ramm,et al. Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows , 2007 .
[37] Alfio Quarteroni,et al. Cardiovascular mathematics : modeling and simulation of the circulatory system , 2009 .
[38] D. Peric,et al. A computational framework for fluid–structure interaction: Finite element formulation and applications , 2006 .
[39] Matthias Heil,et al. An efficient preconditioner for monolithically-coupled large-displacement fluid-structure interaction problems with pseudo-solid mesh updates , 2012, J. Comput. Phys..
[40] H. Banks,et al. Viscoelastic Models for Passive Arterial Wall Dynamics , 2009 .
[41] Editors , 1986, Brain Research Bulletin.
[42] Miguel A. Fernández,et al. Galerkin Finite Element Methods with Symmetric Pressure Stabilization for the Transient Stokes Equations: Stability and Convergence Analysis , 2008, SIAM J. Numer. Anal..
[43] Jean-Frédéric Gerbeau,et al. A Quasi-Newton Algorithm Based on a Reduced Model for Fluid-Structure Interaction Problems in Blood Flows , 2003 .
[44] Miguel A. Fernández,et al. Incremental displacement-correction schemes for incompressible fluid-structure interaction , 2012, Numerische Mathematik.
[45] T. Hughes,et al. Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .
[46] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .
[47] A. Hazel,et al. Fluid-Structure Interaction in Internal Physiological Flows , 2011 .
[48] Miguel Angel Fernández,et al. Displacement-velocity correction schemes for incompressible fluid-structure interaction , 2011 .
[49] E. Ramm,et al. Models and finite elements for thin-walled structures , 2004 .
[50] Miguel Angel Fernández,et al. Coupling schemes for incompressible fluid-structure interaction: implicit, semi-implicit and explicit , 2011 .
[51] J-F Gerbeau,et al. External tissue support and fluid–structure simulation in blood flows , 2012, Biomechanics and modeling in mechanobiology.
[52] Fabio Nobile,et al. Added-mass effect in the design of partitioned algorithms for fluid-structure problems , 2005 .
[53] Tayfun E. Tezduyar,et al. Computational Methods for Parachute Fluid–Structure Interactions , 2012 .
[54] Paolo Crosetto,et al. Parallel Algorithms for Fluid-Structure Interaction Problems in Haemodynamics , 2011, SIAM J. Sci. Comput..
[55] Mária Lukáčová-Medvid’ová,et al. Kinematic splitting algorithm for fluid–structure interaction in hemodynamics , 2013 .
[56] Rolf Rannacher,et al. On the finite element approximation of the nonstationary Navier-Stokes problem , 1980 .
[57] Miguel A. Fernández,et al. A projection semi‐implicit scheme for the coupling of an elastic structure with an incompressible fluid , 2007 .
[58] Robert Schaefer,et al. Mechanical Models of Artery Walls , 2008 .
[59] F. NOBILE,et al. An Effective Fluid-Structure Interaction Formulation for Vascular Dynamics by Generalized Robin Conditions , 2008, SIAM J. Sci. Comput..
[60] Fabio Nobile,et al. Fluid-structure partitioned procedures based on Robin transmission conditions , 2008, J. Comput. Phys..