Explicit Robin–Neumann schemes for the coupling of incompressible fluids with thin-walled structures

Abstract We introduce a class of explicit coupling schemes for the numerical solution of fluid–structure interaction problems involving a viscous incompressible fluid and a general thin-walled structure (e.g., including damping and non-linear behavior). The fundamental ingredient in these methods is a (parameter free) explicit Robin interface condition for the fluid, which enables the fluid–solid splitting through appropriate extrapolations of the solid velocity and fluid stress on the interface. The resulting solution procedures are genuinely partitioned. Stability and error estimates are provided for all the variants (depending on the extrapolations), using energy arguments within a representative linear setting. In particular, we show that one of them simultaneously yields added-mass free unconditional stability and optimal (first-order) time accuracy. A comprehensive numerical study, involving different examples from the literature, supports the theory.

[1]  M. Heil An efficient solver for the fully-coupled solution of large-displacement fluid-structure interaction problems , 2004 .

[2]  Dominique Chapelle,et al.  MODELING OF THE INCLUSION OF A REINFORCING SHEET WITHIN A 3D MEDIUM , 2003 .

[3]  W. Wall,et al.  A Solution for the Incompressibility Dilemma in Partitioned Fluid–Structure Interaction with Pure Dirichlet Fluid Domains , 2006 .

[4]  Miguel Angel Fernández,et al.  A Newton method using exact jacobians for solving fluid-structure coupling , 2005 .

[5]  Miguel Angel Fern Incremental displacement-correction schemes for incompressible uid-structure interaction: stability and convergence analysis , 2013 .

[6]  J. Z. Zhu,et al.  The finite element method , 1977 .

[7]  Frédéric Hecht,et al.  New development in freefem++ , 2012, J. Num. Math..

[8]  E. D. Langre,et al.  Fluid-Structure Interactions: Cross-Flow-Induced Instabilities , 2010 .

[9]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[10]  Gianluigi Rozza,et al.  Numerical Simulation of Sailing Boats: Dynamics, FSI, and Shape Optimization , 2012 .

[11]  Suncica Canic,et al.  Modeling Viscoelastic Behavior of Arterial Walls and Their Interaction with Pulsatile Blood Flow , 2006, SIAM J. Appl. Math..

[12]  R. Rannacher,et al.  Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: error estimates for second-order time discretization , 1990 .

[13]  L. Heltai,et al.  Mathematical Models and Methods in Applied Sciences Vol. 17, No. 10 (17) 1479–1505 c ○ World Scientific Publishing Company NUMERICAL STABILITY OF THE FINITE ELEMENT IMMERSED BOUNDARY METHOD , 2005 .

[14]  S. R. Parks,et al.  Evolution of the wall shear stresses during the progressive enlargement of symmetric abdominal aortic aneurysms , 2006, Journal of Fluid Mechanics.

[15]  Erik Burman,et al.  Stabilized explicit coupling for fluid-structure interaction using Nitsche s method , 2007 .

[16]  Marina Vidrascu,et al.  Generalized Robin–Neumann explicit coupling schemes for incompressible fluid‐structure interaction: Stability analysis and numerics , 2015 .

[17]  Wolfgang A. Wall,et al.  Parallel multilevel solution of nonlinear shell structures , 2005 .

[18]  Miguel Angel Fernández,et al.  Incremental displacement-correction schemes for the explicit coupling of a thin structure with an incompressible fluid , 2011 .

[19]  Annalisa Quaini,et al.  Fluid-structure interaction in blood flow capturing non-zero longitudinal structure displacement , 2012, J. Comput. Phys..

[20]  Long Chen FINITE ELEMENT METHOD , 2013 .

[21]  F. Brezzi,et al.  On the Stabilization of Finite Element Approximations of the Stokes Equations , 1984 .

[22]  P. Tallec,et al.  Fluid structure interaction with large structural displacements , 2001 .

[23]  A. Quarteroni,et al.  Fluid–structure algorithms based on Steklov–Poincaré operators , 2006 .

[24]  Erik Burman,et al.  Stabilization of explicit coupling in fluid-structure interaction involving fluid incompressibility , 2009 .

[25]  W. Wall,et al.  Fixed-point fluid–structure interaction solvers with dynamic relaxation , 2008 .

[26]  A. Quarteroni,et al.  On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels , 2001 .

[27]  Miguel A. Fernández,et al.  Robin Based Semi-Implicit Coupling in Fluid-Structure Interaction: Stability Analysis and Numerics , 2009, SIAM J. Sci. Comput..

[28]  A. Quarteroni,et al.  A SEMI-IMPLICIT APPROACH FOR FLUID-STRUCTURE INTERACTION BASED ON AN ALGEBRAIC FRACTIONAL STEP METHOD , 2007 .

[29]  Roland Glowinski,et al.  Stable loosely-coupled-type algorithm for fluid-structure interaction in blood flow , 2009, J. Comput. Phys..

[30]  Charles S. Peskin,et al.  Stability and Instability in the Computation of Flows with Moving Immersed Boundaries: A Comparison of Three Methods , 1992, SIAM J. Sci. Comput..

[31]  Peter Hansbo,et al.  Nitsche's method for interface problems in computa‐tional mechanics , 2005 .

[32]  Fabio Nobile,et al.  Partitioned Algorithms for Fluid-Structure Interaction Problems in Haemodynamics , 2012, Milan Journal of Mathematics.

[33]  D. Chapelle,et al.  The Finite Element Analysis of Shells - Fundamentals , 2003 .

[34]  Damodar Maity,et al.  Effect of baffles on a partially filled cubic tank: Numerical simulation and experimental validation , 2009 .

[35]  W. Wall,et al.  Truly monolithic algebraic multigrid for fluid–structure interaction , 2011 .

[36]  E. Ramm,et al.  Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows , 2007 .

[37]  Alfio Quarteroni,et al.  Cardiovascular mathematics : modeling and simulation of the circulatory system , 2009 .

[38]  D. Peric,et al.  A computational framework for fluid–structure interaction: Finite element formulation and applications , 2006 .

[39]  Matthias Heil,et al.  An efficient preconditioner for monolithically-coupled large-displacement fluid-structure interaction problems with pseudo-solid mesh updates , 2012, J. Comput. Phys..

[40]  H. Banks,et al.  Viscoelastic Models for Passive Arterial Wall Dynamics , 2009 .

[41]  Editors , 1986, Brain Research Bulletin.

[42]  Miguel A. Fernández,et al.  Galerkin Finite Element Methods with Symmetric Pressure Stabilization for the Transient Stokes Equations: Stability and Convergence Analysis , 2008, SIAM J. Numer. Anal..

[43]  Jean-Frédéric Gerbeau,et al.  A Quasi-Newton Algorithm Based on a Reduced Model for Fluid-Structure Interaction Problems in Blood Flows , 2003 .

[44]  Miguel A. Fernández,et al.  Incremental displacement-correction schemes for incompressible fluid-structure interaction , 2012, Numerische Mathematik.

[45]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[46]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[47]  A. Hazel,et al.  Fluid-Structure Interaction in Internal Physiological Flows , 2011 .

[48]  Miguel Angel Fernández,et al.  Displacement-velocity correction schemes for incompressible fluid-structure interaction , 2011 .

[49]  E. Ramm,et al.  Models and finite elements for thin-walled structures , 2004 .

[50]  Miguel Angel Fernández,et al.  Coupling schemes for incompressible fluid-structure interaction: implicit, semi-implicit and explicit , 2011 .

[51]  J-F Gerbeau,et al.  External tissue support and fluid–structure simulation in blood flows , 2012, Biomechanics and modeling in mechanobiology.

[52]  Fabio Nobile,et al.  Added-mass effect in the design of partitioned algorithms for fluid-structure problems , 2005 .

[53]  Tayfun E. Tezduyar,et al.  Computational Methods for Parachute Fluid–Structure Interactions , 2012 .

[54]  Paolo Crosetto,et al.  Parallel Algorithms for Fluid-Structure Interaction Problems in Haemodynamics , 2011, SIAM J. Sci. Comput..

[55]  Mária Lukáčová-Medvid’ová,et al.  Kinematic splitting algorithm for fluid–structure interaction in hemodynamics , 2013 .

[56]  Rolf Rannacher,et al.  On the finite element approximation of the nonstationary Navier-Stokes problem , 1980 .

[57]  Miguel A. Fernández,et al.  A projection semi‐implicit scheme for the coupling of an elastic structure with an incompressible fluid , 2007 .

[58]  Robert Schaefer,et al.  Mechanical Models of Artery Walls , 2008 .

[59]  F. NOBILE,et al.  An Effective Fluid-Structure Interaction Formulation for Vascular Dynamics by Generalized Robin Conditions , 2008, SIAM J. Sci. Comput..

[60]  Fabio Nobile,et al.  Fluid-structure partitioned procedures based on Robin transmission conditions , 2008, J. Comput. Phys..