A triangular canonical form for a class of 0-flat nonlinear systems

This article proposes a triangular canonical form for a class of 0-flat nonlinear systems. Necessary and sufficient geometrical conditions are given in order to guarantee the existence of a local diffeomorphism to transform the studied nonlinear systems into the proposed 0-flat canonical form, which enables us to compute the flat output as well.

[1]  R. Murray,et al.  Flat Systems , 1997 .

[2]  M. Fliess,et al.  Linéarisation par bouclage dynamique et transformations de Lie-Bäcklund , 1993 .

[3]  K. Schlacher,et al.  CONSTRUCTION OF FLAT OUTPUTS BY REDUCTION AND ELIMINATION , 2007 .

[4]  Philippe Martin,et al.  Any (controllable) driftless system with 3 inputs and 5 states is flat , 1995 .

[5]  D. M. Tilbury,et al.  A bound on the number of integrators needed to linearize a control system , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[6]  P. S. P. Silva Flatness of nonlinear control systems and exterior differential systems , 2001 .

[7]  M. Fliess,et al.  Some open questions related to flat nonlinear systems , 1999 .

[8]  S. Sastry,et al.  Trajectory generation for the N-trailer problem using Goursat normal form , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[9]  Pierre Rouchon Necessary Condition and Genericity of Dynamic Feedback Linearization , 1994 .

[10]  Philippe Martin,et al.  Any (controllable) driftless system with m inputs and m+2 states is flat , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[11]  W. Szymanowski,et al.  BULLETIN DE L'ACADEMIE POLONAISE DES SCIENCES , 1953 .

[12]  P. S. P. Silva Flatness of nonlinear control systems : a Cartan-Kähler Approach , 2000 .

[13]  J. Lévine Analysis and Control of Nonlinear Systems: A Flatness-based Approach , 2009 .

[14]  Paulo Sérgio Pereira da Silva,et al.  A TRIANGULAR FORM FOR FLAT NONLINEAR SYSTEMS WITH TWO CONTROLS AND FIVE OR LESS STATES , 2007 .

[15]  M. Fliess,et al.  Deux applications de la géométrie locale des diffiétés , 1997 .

[16]  M. Fliess,et al.  A DIFFERENTIAL GEOMETRIC SETTING FOR DYNAMIC EQUIVALENCE AND DYNAMIC LINEARIZATION , 1994 .

[17]  D. M. Tilbury,et al.  A bound on the number of integrators needed to linearize a control system , 1996 .

[18]  M. Fliess,et al.  Sur les systèmes non linéaires différentiellement plats , 1992 .

[19]  Nail H. Ibragimov,et al.  Lie-Backlund Transformations in Applications , 1987 .

[20]  Sahjendra N. Singh A modified algorithm for invertibility in nonlinear systems , 1981 .

[21]  Hector Bessa Silveira Formas triangulares para sistemas não-lineares com duas entradas e controle de sistemas sem arrasto em SU(n) com aplicações em mecânica quântica. , 2010 .

[22]  F. Rotella,et al.  Commande des systèmes par platitude , 2007, Automatique et ingénierie système.

[23]  J. Lévine,et al.  On dynamic feedback linearization , 1989 .

[24]  Driss Boutat,et al.  A geometrical characterization of a class of 0-flat affine dynamical systems , 2009, 2009 American Control Conference.

[25]  Sunil K. Agrawal,et al.  Differentially Flat Systems , 2004 .

[26]  E. Cartan,et al.  Sur l'équivalence absolue de certains systèmes d'équations différentielles et sur certaines familles de courbes , 1914 .

[27]  J. Descusse,et al.  Decoupling with Dynamic Compensation for Strong Invertible Affine Non Linear Systems , 1985 .

[28]  R. Murray,et al.  Differential Flatness and Absolute Equivalence of Nonlinear Control Systems , 1998 .

[29]  Philippe Martin,et al.  A Lie-Backlund approach to equivalence and flatness of nonlinear systems , 1999, IEEE Trans. Autom. Control..

[30]  Veit Hagenmeyer,et al.  Robustness analysis of exact feedforward linearization based on differential flatness , 2003, Autom..

[31]  Emmanuel Delaleau,et al.  Filtrations in feedback synthesis: Part I – Systems and feedbacks , 1998 .

[32]  W. Sluis A necessary condition for dynamic feedback linearization , 1993 .

[33]  Louis R. Hunt,et al.  Design for Multi-Input Nonlinear Systems , 1982 .

[34]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[35]  Jean-Baptiste Pomet On dynamic feedback linearization of four-dimensional affine control systems with two inputs , 1997, ESAIM: Control, Optimisation and Calculus of Variations.

[36]  J. Levine,et al.  On flatness necessary and sufficient conditions , 2004 .

[37]  Witold Respondek,et al.  Geometry in nonlinear control and differential inclusions , 1995 .

[38]  W. Shadwick,et al.  Absolute equivalence and dynamic feedback linearization , 1990 .

[39]  Joachim Rudolph,et al.  Well-formed dynamics under quasi-static state feedback , 1995 .

[40]  H. P. Annales de l'Institut Henri Poincaré , 1931, Nature.