A triangular canonical form for a class of 0-flat nonlinear systems
暂无分享,去创建一个
Driss Boutat | Jean-Pierre Barbot | Frédéric Kratz | Gang Zheng | Soraya Bououden | J. Barbot | F. Kratz | D. Boutat | G. Zheng | Soraya Bououden
[1] R. Murray,et al. Flat Systems , 1997 .
[2] M. Fliess,et al. Linéarisation par bouclage dynamique et transformations de Lie-Bäcklund , 1993 .
[3] K. Schlacher,et al. CONSTRUCTION OF FLAT OUTPUTS BY REDUCTION AND ELIMINATION , 2007 .
[4] Philippe Martin,et al. Any (controllable) driftless system with 3 inputs and 5 states is flat , 1995 .
[5] D. M. Tilbury,et al. A bound on the number of integrators needed to linearize a control system , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.
[6] P. S. P. Silva. Flatness of nonlinear control systems and exterior differential systems , 2001 .
[7] M. Fliess,et al. Some open questions related to flat nonlinear systems , 1999 .
[8] S. Sastry,et al. Trajectory generation for the N-trailer problem using Goursat normal form , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.
[9] Pierre Rouchon. Necessary Condition and Genericity of Dynamic Feedback Linearization , 1994 .
[10] Philippe Martin,et al. Any (controllable) driftless system with m inputs and m+2 states is flat , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.
[11] W. Szymanowski,et al. BULLETIN DE L'ACADEMIE POLONAISE DES SCIENCES , 1953 .
[12] P. S. P. Silva. Flatness of nonlinear control systems : a Cartan-Kähler Approach , 2000 .
[13] J. Lévine. Analysis and Control of Nonlinear Systems: A Flatness-based Approach , 2009 .
[14] Paulo Sérgio Pereira da Silva,et al. A TRIANGULAR FORM FOR FLAT NONLINEAR SYSTEMS WITH TWO CONTROLS AND FIVE OR LESS STATES , 2007 .
[15] M. Fliess,et al. Deux applications de la géométrie locale des diffiétés , 1997 .
[16] M. Fliess,et al. A DIFFERENTIAL GEOMETRIC SETTING FOR DYNAMIC EQUIVALENCE AND DYNAMIC LINEARIZATION , 1994 .
[17] D. M. Tilbury,et al. A bound on the number of integrators needed to linearize a control system , 1996 .
[18] M. Fliess,et al. Sur les systèmes non linéaires différentiellement plats , 1992 .
[19] Nail H. Ibragimov,et al. Lie-Backlund Transformations in Applications , 1987 .
[20] Sahjendra N. Singh. A modified algorithm for invertibility in nonlinear systems , 1981 .
[21] Hector Bessa Silveira. Formas triangulares para sistemas não-lineares com duas entradas e controle de sistemas sem arrasto em SU(n) com aplicações em mecânica quântica. , 2010 .
[22] F. Rotella,et al. Commande des systèmes par platitude , 2007, Automatique et ingénierie système.
[23] J. Lévine,et al. On dynamic feedback linearization , 1989 .
[24] Driss Boutat,et al. A geometrical characterization of a class of 0-flat affine dynamical systems , 2009, 2009 American Control Conference.
[25] Sunil K. Agrawal,et al. Differentially Flat Systems , 2004 .
[26] E. Cartan,et al. Sur l'équivalence absolue de certains systèmes d'équations différentielles et sur certaines familles de courbes , 1914 .
[27] J. Descusse,et al. Decoupling with Dynamic Compensation for Strong Invertible Affine Non Linear Systems , 1985 .
[28] R. Murray,et al. Differential Flatness and Absolute Equivalence of Nonlinear Control Systems , 1998 .
[29] Philippe Martin,et al. A Lie-Backlund approach to equivalence and flatness of nonlinear systems , 1999, IEEE Trans. Autom. Control..
[30] Veit Hagenmeyer,et al. Robustness analysis of exact feedforward linearization based on differential flatness , 2003, Autom..
[31] Emmanuel Delaleau,et al. Filtrations in feedback synthesis: Part I – Systems and feedbacks , 1998 .
[32] W. Sluis. A necessary condition for dynamic feedback linearization , 1993 .
[33] Louis R. Hunt,et al. Design for Multi-Input Nonlinear Systems , 1982 .
[34] M. Fliess,et al. Flatness and defect of non-linear systems: introductory theory and examples , 1995 .
[35] Jean-Baptiste Pomet. On dynamic feedback linearization of four-dimensional affine control systems with two inputs , 1997, ESAIM: Control, Optimisation and Calculus of Variations.
[36] J. Levine,et al. On flatness necessary and sufficient conditions , 2004 .
[37] Witold Respondek,et al. Geometry in nonlinear control and differential inclusions , 1995 .
[38] W. Shadwick,et al. Absolute equivalence and dynamic feedback linearization , 1990 .
[39] Joachim Rudolph,et al. Well-formed dynamics under quasi-static state feedback , 1995 .
[40] H. P.. Annales de l'Institut Henri Poincaré , 1931, Nature.