A posteriori error estimation for semilinear parabolic optimal control problems with application to model reduction by POD
暂无分享,去创建一个
[1] Kirsten Morris,et al. Control of Systems Governed by Partial Differential Equations , 2018, The Control Systems Handbook.
[2] N. Nguyen,et al. An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .
[3] Stefan Volkwein,et al. Numerical Analysis of POD A-posteriori Error Estimation for Optimal Control , 2013, Control and Optimization with PDE Constraints.
[4] Mark Kärcher,et al. Reduced basis a posteriori error bounds for parametrized linear-quadratic elliptic optimal control problems , 2011 .
[5] Enrique S. Quintana-Ortí,et al. Model Reduction Based on Spectral Projection Methods , 2005 .
[6] S. Volkwein,et al. MODEL REDUCTION USING PROPER ORTHOGONAL DECOMPOSITION , 2008 .
[7] Athanasios C. Antoulas,et al. Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.
[8] Ekkehard W. Sachs,et al. A priori error estimates for reduced order models in finance , 2013 .
[9] F. Tröltzsch. Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .
[10] A. Ioffe. Necessary and Sufficient Conditions for a Local Minimum. 3: Second Order Conditions and Augmented Duality , 1979 .
[11] J. Lions. Optimal Control of Systems Governed by Partial Differential Equations , 1971 .
[12] Arnd Rösch,et al. How to Check Numerically the Sufficient Optimality Conditions for Infinite-dimensional Optimization Problems , 2009 .
[13] Fredi Tröltzsch,et al. Error Estimates for the Numerical Approximation of a Semilinear Elliptic Control Problem , 2002, Comput. Optim. Appl..
[14] Boris Vexler,et al. A priori error estimates for space–time finite element discretization of semilinear parabolic optimal control problems , 2011, Numerische Mathematik.
[15] Stefan Volkwein,et al. Galerkin proper orthogonal decomposition methods for parabolic problems , 2001, Numerische Mathematik.
[16] Fredi Tröltzsch,et al. First- and Second-Order Optimality Conditions for a Class of Optimal Control Problems with Quasilinear Elliptic Equations , 2009, SIAM J. Control. Optim..
[17] K. Schittkowski,et al. Numerical solution of a time-optimal parabolic boundary-value control problem , 1979 .
[18] Stefan Ulbrich,et al. Optimization with PDE Constraints , 2008, Mathematical modelling.
[19] Athanasios C. Antoulas,et al. Approximation of Large-Scale Dynamical Systems (Advances in Design and Control) (Advances in Design and Control) , 2005 .
[20] Timo Tonn,et al. Comparison of the reduced-basis and POD a posteriori error estimators for an elliptic linear-quadratic optimal control problem , 2011 .
[21] K. Malanowski. Convergence of approximations vs. regularity of solutions for convex, control-constrained optimal-control problems , 1982 .
[22] Daniel Wachsmuth,et al. Numerical Verification of Optimality Conditions , 2008, SIAM J. Control. Optim..
[23] Fredi Tröltzsch,et al. Sufficient Second-Order Optimality Conditions for Semilinear Control Problems with Pointwise State Constraints , 2008, SIAM J. Optim..
[24] Stefan Volkwein,et al. POD A-POSTERIORI ERROR BASED INEXACT SQP METHOD FOR BILINEAR ELLIPTIC OPTIMAL CONTROL PROBLEMS , 2010 .
[25] Stefan Volkwein. Optimal Control of a Phase‐Field Model Using Proper Orthogonal Decomposition , 2001 .
[26] B. R. Noack. Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 2013 .
[27] Stefan Volkwein,et al. POD a-posteriori error estimates for linear-quadratic optimal control problems , 2009, Comput. Optim. Appl..
[28] K. Malanowski. Two norm approach in stability analysis of optimization and optimal control problems , 1996 .
[29] Stefan Volkwein,et al. Error estimates for abstract linear–quadratic optimal control problems using proper orthogonal decomposition , 2008, Comput. Optim. Appl..
[30] Ivan P. Gavrilyuk,et al. Lagrange multiplier approach to variational problems and applications , 2010, Math. Comput..
[31] Danny C. Sorensen,et al. Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..
[32] Oliver Lass,et al. POD Galerkin Schemes for Nonlinear Elliptic-Parabolic Systems , 2013, SIAM J. Sci. Comput..
[33] W. Hager,et al. Optimality, stability, and convergence in nonlinear control , 1995 .