A posteriori error estimation for semilinear parabolic optimal control problems with application to model reduction by POD

We consider the following problem of error estimation for the optimal control of nonlinear parabolic partial differential equations: let an arbitrary admissible control function be given. How far is it from the next locally optimal control? Under natural assumptions including a second-order sufficient optimality condition for the (unknown) locally optimal control, we estimate the distance between the two controls. To do this, we need some information on the lowest eigenvalue of the reduced Hessian. We apply this technique to a model reduced optimal control problem obtained by proper orthogonal decomposition (POD). The distance between a local solution of the reduced problem to a local solution of the original problem is estimated.

[1]  Kirsten Morris,et al.  Control of Systems Governed by Partial Differential Equations , 2018, The Control Systems Handbook.

[2]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[3]  Stefan Volkwein,et al.  Numerical Analysis of POD A-posteriori Error Estimation for Optimal Control , 2013, Control and Optimization with PDE Constraints.

[4]  Mark Kärcher,et al.  Reduced basis a posteriori error bounds for parametrized linear-quadratic elliptic optimal control problems , 2011 .

[5]  Enrique S. Quintana-Ortí,et al.  Model Reduction Based on Spectral Projection Methods , 2005 .

[6]  S. Volkwein,et al.  MODEL REDUCTION USING PROPER ORTHOGONAL DECOMPOSITION , 2008 .

[7]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[8]  Ekkehard W. Sachs,et al.  A priori error estimates for reduced order models in finance , 2013 .

[9]  F. Tröltzsch Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .

[10]  A. Ioffe Necessary and Sufficient Conditions for a Local Minimum. 3: Second Order Conditions and Augmented Duality , 1979 .

[11]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[12]  Arnd Rösch,et al.  How to Check Numerically the Sufficient Optimality Conditions for Infinite-dimensional Optimization Problems , 2009 .

[13]  Fredi Tröltzsch,et al.  Error Estimates for the Numerical Approximation of a Semilinear Elliptic Control Problem , 2002, Comput. Optim. Appl..

[14]  Boris Vexler,et al.  A priori error estimates for space–time finite element discretization of semilinear parabolic optimal control problems , 2011, Numerische Mathematik.

[15]  Stefan Volkwein,et al.  Galerkin proper orthogonal decomposition methods for parabolic problems , 2001, Numerische Mathematik.

[16]  Fredi Tröltzsch,et al.  First- and Second-Order Optimality Conditions for a Class of Optimal Control Problems with Quasilinear Elliptic Equations , 2009, SIAM J. Control. Optim..

[17]  K. Schittkowski,et al.  Numerical solution of a time-optimal parabolic boundary-value control problem , 1979 .

[18]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[19]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems (Advances in Design and Control) (Advances in Design and Control) , 2005 .

[20]  Timo Tonn,et al.  Comparison of the reduced-basis and POD a posteriori error estimators for an elliptic linear-quadratic optimal control problem , 2011 .

[21]  K. Malanowski Convergence of approximations vs. regularity of solutions for convex, control-constrained optimal-control problems , 1982 .

[22]  Daniel Wachsmuth,et al.  Numerical Verification of Optimality Conditions , 2008, SIAM J. Control. Optim..

[23]  Fredi Tröltzsch,et al.  Sufficient Second-Order Optimality Conditions for Semilinear Control Problems with Pointwise State Constraints , 2008, SIAM J. Optim..

[24]  Stefan Volkwein,et al.  POD A-POSTERIORI ERROR BASED INEXACT SQP METHOD FOR BILINEAR ELLIPTIC OPTIMAL CONTROL PROBLEMS , 2010 .

[25]  Stefan Volkwein Optimal Control of a Phase‐Field Model Using Proper Orthogonal Decomposition , 2001 .

[26]  B. R. Noack Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 2013 .

[27]  Stefan Volkwein,et al.  POD a-posteriori error estimates for linear-quadratic optimal control problems , 2009, Comput. Optim. Appl..

[28]  K. Malanowski Two norm approach in stability analysis of optimization and optimal control problems , 1996 .

[29]  Stefan Volkwein,et al.  Error estimates for abstract linear–quadratic optimal control problems using proper orthogonal decomposition , 2008, Comput. Optim. Appl..

[30]  Ivan P. Gavrilyuk,et al.  Lagrange multiplier approach to variational problems and applications , 2010, Math. Comput..

[31]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[32]  Oliver Lass,et al.  POD Galerkin Schemes for Nonlinear Elliptic-Parabolic Systems , 2013, SIAM J. Sci. Comput..

[33]  W. Hager,et al.  Optimality, stability, and convergence in nonlinear control , 1995 .