Incremental Inprocessing in SAT Solving

Incremental SAT is about solving a sequence of related SAT problems efficiently. It makes use of already learned information to avoid repeating redundant work. Also preprocessing and inprocessing are considered to be crucial. Our calculus uses the most general redundancy property and extends existing inprocessing rules to incremental SAT solving. It allows to automatically reverse earlier simplification steps, which are inconsistent with literals in new incrementally added clauses. Our approach to incremental SAT solving not only simplifies the use of inprocessing but also substantially improves solving time.

[1]  Armin Biere,et al.  Automated Reencoding of Boolean Formulas , 2012, Haifa Verification Conference.

[2]  Alexander Nadel Boosting minimal unsatisfiable core extraction , 2010, Formal Methods in Computer Aided Design.

[3]  John N. Hooker,et al.  Solving the incremental satisfiability problem , 1993, J. Log. Program..

[4]  Armin Biere,et al.  Everything You Always Wanted to Know about Blocked Sets (But Were Afraid to Ask) , 2014, SAT.

[5]  Armin Biere,et al.  Symbolic Model Checking without BDDs , 1999, TACAS.

[6]  Armin Biere,et al.  Hardware model checking competition 2017 , 2017, 2017 Formal Methods in Computer Aided Design (FMCAD).

[7]  Fabio Somenzi,et al.  Alembic: An Efficient Algorithm for CNF Preprocessing , 2007, 2007 44th ACM/IEEE Design Automation Conference.

[8]  Armin Biere,et al.  Effective Preprocessing in SAT Through Variable and Clause Elimination , 2005, SAT.

[9]  Ronen I. Brafman,et al.  A simplifier for propositional formulas with many binary clauses , 2001, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[10]  Armin Biere,et al.  Inprocessing Rules , 2012, IJCAR.

[11]  Lakhdar Sais,et al.  Vivifying Propositional Clausal Formulae , 2008, ECAI.

[12]  Armin Biere P LINGELING , T REENGELING and Y AL SAT Entering the SAT Competition 2018 , 2018 .

[13]  Christoph Weidenbach,et al.  A Verified SAT Solver Framework with Learn, Forget, Restart, and Incrementality , 2016, IJCAR.

[14]  Oliver Kullmann,et al.  On a Generalization of Extended Resolution , 1999, Discret. Appl. Math..

[15]  Fahiem Bacchus,et al.  Effective Preprocessing with Hyper-Resolution and Equality Reduction , 2003, SAT.

[16]  Malay K. Ganai,et al.  Robust Boolean reasoning for equivalence checking and functional property verification , 2002, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[17]  Armin Biere,et al.  Blocked Clause Elimination , 2010, TACAS.

[18]  Fan Xiao,et al.  An Effective Learnt Clause Minimization Approach for CDCL SAT Solvers , 2017, IJCAI.

[19]  Aaron R. Bradley,et al.  SAT-Based Model Checking without Unrolling , 2011, VMCAI.

[20]  David Brumley,et al.  All You Ever Wanted to Know about Dynamic Taint Analysis and Forward Symbolic Execution (but Might Have Been Afraid to Ask) , 2010, 2010 IEEE Symposium on Security and Privacy.

[21]  Roberto Sebastiani,et al.  Lazy Satisability Modulo Theories , 2007, J. Satisf. Boolean Model. Comput..

[22]  Armin Biere,et al.  Revisiting Hyper Binary Resolution , 2013, CPAIOR.

[23]  Alexander Nadel,et al.  Efficient SAT Solving under Assumptions , 2012, SAT.

[24]  Claude Castelluccia,et al.  Extending SAT Solvers to Cryptographic Problems , 2009, SAT.

[25]  Armin Biere,et al.  Reconstructing Solutions after Blocked Clause Elimination , 2010, SAT.

[26]  Armin Biere,et al.  Compressing BMC Encodings with QBF , 2007, BMC@FLoC.

[27]  Bernd Becker,et al.  Incremental preprocessing methods for use in BMC , 2011, Formal Methods Syst. Des..

[28]  Ofer Strichman,et al.  Ultimately Incremental SAT , 2014, SAT.

[29]  Armin Biere,et al.  Local Two-Level And-Inverter Graph Minimization without Blowup , 2006 .

[30]  Vasco M. Manquinho,et al.  On Using Incremental Encodings in Unsatisfiability-based MaxSAT Solving , 2015, J. Satisf. Boolean Model. Comput..

[31]  Armin Biere,et al.  Strong Extension-Free Proof Systems , 2019, Journal of Automated Reasoning.

[32]  Gilles Audemard,et al.  Improving Glucose for Incremental SAT Solving with Assumptions: Application to MUS Extraction , 2013, SAT.

[33]  Armin Biere,et al.  Btor2 , BtorMC and Boolector 3.0 , 2018, CAV.

[34]  Robert E. Tarjan,et al.  A Linear-Time Algorithm for Testing the Truth of Certain Quantified Boolean Formulas , 1979, Inf. Process. Lett..

[35]  Stephan Gocht,et al.  Accelerating SAT Based Planning with Incremental SAT Solving , 2017, ICAPS.

[36]  Armin Biere,et al.  Short Proofs Without New Variables , 2017, CADE.

[37]  Armin Biere Yet another Local Search Solver and Lingeling and Friends Entering the SAT Competition 2014 , 2014 .

[38]  Ofer Strichman,et al.  Preprocessing in Incremental SAT , 2012, SAT.

[39]  Gilles Audemard,et al.  A Restriction of Extended Resolution for Clause Learning SAT Solvers , 2010, AAAI.

[40]  Niklas Sörensson,et al.  Temporal induction by incremental SAT solving , 2003, BMC@CAV.

[41]  Armin Biere,et al.  Implicit Hitting Set Algorithms for Maximum Satisfiability Modulo Theories , 2018, IJCAR.

[42]  Armin Biere,et al.  SAT Race 2015 , 2016, Artif. Intell..

[43]  Niklas Sörensson,et al.  An Extensible SAT-solver , 2003, SAT.

[44]  Armin Biere,et al.  Efficient CNF Simplification Based on Binary Implication Graphs , 2011, SAT.