Minimal logarithmic signatures for finite groups of Lie type

A logarithmic signature (LS) for a finite group G is an ordered tuple α =  [A1, A2, . . . , An] of subsets Ai of G, such that every element $${g \in G}$$ can be expressed uniquely as a product g =  a1a2 . . . an, where $${a_i \in A_i}$$. The length of an LS α is defined to be $${l(\alpha)= \sum^{n}_{i=1}|A_i|}$$. It can be easily seen that for a group G of order $${\prod^k_{j=1}{p_j}^{m_j}}$$, the length of any LS α for G, satisfies, $${l(\alpha) \geq \sum^k_{j=1}m_jp_j}$$. An LS for which this lower bound is achieved is called a minimal logarithmic signature (MLS) (González Vasco et al., Tatra Mt. Math. Publ. 25:2337, 2002). The MLS conjecture states that every finite simple group has an MLS. This paper addresses the MLS conjecture for classical groups of Lie type and is shown to be true for the families PSLn(q) and PSp2n(q). Our methods use Singer subgroups and the Levi decomposition of parabolic subgroups for these groups.

[1]  Rainer Steinwandt,et al.  Weak Keys in MST 1 , 2002 .

[2]  Paul B. Garrett,et al.  Buildings and Classical Groups , 1997 .

[3]  Áron Bereczky,et al.  Maximal Overgroups of Singer Elements in Classical Groups , 2000 .

[4]  Douglas R. Stinson,et al.  New Approaches to Designing Public Key Cryptosystems Using One-Way Functions and Trapdoors in Finite Groups , 2001, Journal of Cryptology.

[5]  Spyros S. Magliveras,et al.  A Public Key Cryptosystem Based on Non-abelian Finite Groups , 2008, Journal of Cryptology.

[6]  Martin Rötteler,et al.  On Minimal Length Factorizations of Finite Groups , 2003, Exp. Math..

[7]  H. Minkowski,et al.  Geometrie der Zahlen , 1896 .

[8]  Robert A. Wilson,et al.  The finite simple groups , 2009 .

[9]  J. Singer A theorem in finite projective geometry and some applications to number theory , 1938 .

[10]  María Isabel González Vasco,et al.  Weak Keys in MST1 , 2005, Des. Codes Cryptogr..

[11]  Spyros S. Magliveras,et al.  ON THE SECURITY OF A REALIZATION OF CRYPTOSYSTEM MST3 , 2008 .

[12]  M. I. Gonz Secret-and Public-key Cryptosystems from Group Factorizations , .

[13]  Spyros S. Magliveras,et al.  Logarithmic signatures of finite groups of Lie type and spreads in a polar space , 2009 .

[14]  Petra E. Holmes On Minimal Factorisations of Sporadic Groups , 2004, Exp. Math..

[15]  Tran van Trung,et al.  On Minimal Logarithmic Signatures of Finite Groups , 2005, Exp. Math..

[16]  J. Conway,et al.  ATLAS of Finite Groups , 1985 .

[17]  Nasir D. Memon,et al.  Algebraic properties of cryptosystem PGM , 1992, Journal of Cryptology.

[18]  Roger W. Carter,et al.  Finite groups of Lie type: Conjugacy classes and complex characters , 1985 .

[19]  Nidhi Singhi,et al.  Minimal logarithmic signatures for classical groups , 2011, Des. Codes Cryptogr..

[20]  R. Tennant Algebra , 1941, Nature.

[21]  H. Minkowski,et al.  Diophantische Approximationen : eine Einführung in die Zahlentheorie , 1907 .

[22]  Arthur T. White,et al.  Permutation Groups and Combinatorial Structures , 1979 .

[23]  Antonio Cossidente,et al.  Remarks on Singer Cyclic Groups and Their Normalizers , 2004, Des. Codes Cryptogr..

[24]  J. Hirschfeld Projective Geometries Over Finite Fields , 1980 .