Neuromodulation and metamodulation by adenosine: Impact and subtleties upon synaptic plasticity regulation

[1]  K. Lamsa,et al.  Adenosine A1 Receptor Suppresses Tonic GABAA Receptor Currents in Hippocampal Pyramidal Cells and in a Defined Subpopulation of Interneurons. , 2016, Cerebral cortex.

[2]  K. Lamsa,et al.  Synaptic mechanisms of adenosine A2A receptor‐mediated hyperexcitability in the hippocampus , 2015, Hippocampus.

[3]  Alfonso Araque,et al.  Astrocytes in endocannabinoid signalling , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[4]  Pedro F. Jacob,et al.  P2Y1 receptor inhibits GABA transport through a calcium signalling‐dependent mechanism in rat cortical astrocytes , 2014, Glia.

[5]  C. Müller,et al.  Impact of in vivo chronic blockade of adenosine A2A receptors on the BDNF-mediated facilitation of LTP , 2014, Neuropharmacology.

[6]  K. Fuxe,et al.  The impact of receptor–receptor interactions in heteroreceptor complexes on brain plasticity , 2014, Expert review of neurotherapeutics.

[7]  S. Goldberg,et al.  Differential Effects of Presynaptic versus Postsynaptic Adenosine A2A Receptor Blockade on Δ9-Tetrahydrocannabinol (THC) Self-Administration in Squirrel Monkeys , 2014, The Journal of Neuroscience.

[8]  Nathan X. Kodama,et al.  Axon targeting of the alpha 7 nicotinic receptor in developing hippocampal neurons by Gprin1 regulates growth , 2014, Journal of neurochemistry.

[9]  A. Sebastião,et al.  Adenosine A2A Receptors as novel upstream regulators of BDNF-mediated attenuation of hippocampal Long-Term Depression (LTD) , 2014, Neuropharmacology.

[10]  T. Outeiro,et al.  Challenges and Promises in the Development of Neurotrophic Factor-Based Therapies for Parkinson’s Disease , 2014, Drugs & Aging.

[11]  R. Franco,et al.  l-DOPA disrupts adenosine A2A–cannabinoid CB1–dopamine D2 receptor heteromer cross-talk in the striatum of hemiparkinsonian rats: Biochemical and behavioral studies , 2014, Experimental Neurology.

[12]  T. Baram,et al.  NMDA Receptor Activation and Calpain Contribute to Disruption of Dendritic Spines by the Stress Neuropeptide CRH , 2013, The Journal of Neuroscience.

[13]  D. Pereira,et al.  Regulation of TrkB receptor translocation to lipid rafts by adenosine A2A receptors and its functional implications for BDNF-induced regulation of synaptic plasticity , 2013, Purinergic Signalling.

[14]  D. Boison Adenosine Kinase: Exploitation for Therapeutic Gain , 2013, Pharmacological Reviews.

[15]  C. Lluis,et al.  A1R–A2AR heteromers coupled to Gs and Gi/0 proteins modulate GABA transport into astrocytes , 2013, Purinergic Signalling.

[16]  J. Henley,et al.  Adenosine: setting the stage for plasticity , 2013, Trends in Neurosciences.

[17]  J. Changeux,et al.  Adenosine A2A receptor blockade reverts hippocampal stress-induced deficits and restores corticosterone circadian oscillation , 2013, Molecular Psychiatry.

[18]  Kenji F. Tanaka,et al.  Increased astrocytic ATP release results in enhanced excitability of the hippocampus , 2013, Glia.

[19]  D. Rombo,et al.  Ischemia-induced synaptic plasticity drives sustained expression of calcium-permeable AMPA receptors in the hippocampus , 2013, Neuropharmacology.

[20]  T. Freund,et al.  Multiple functions of endocannabinoid signaling in the brain. , 2012, Annual review of neuroscience.

[21]  P. Calabresi,et al.  A2A Adenosine Receptor Antagonism Enhances Synaptic and Motor Effects of Cocaine via CB1 Cannabinoid Receptor Activation , 2012, PloS one.

[22]  C. Tasca,et al.  Coadministration of cannabinoid CB1-receptor and adenosine A1-receptor antagonists improves the acquisition of spatial memory in mice: participation of glutamatergic neurotransmission , 2012, Behavioural pharmacology.

[23]  N. Sträter,et al.  Cellular function and molecular structure of ecto-nucleotidases , 2012, Purinergic Signalling.

[24]  P. Agostinho,et al.  Adenosine A2A receptors modulate glutamate uptake in cultured astrocytes and gliosomes , 2012, Glia.

[25]  C. Akerman,et al.  Adenosine Release during Seizures Attenuates GABAA Receptor-Mediated Depolarization , 2012, The Journal of Neuroscience.

[26]  J. Delgado-García,et al.  Transcranial direct-current stimulation modulates synaptic mechanisms involved in associative learning in behaving rabbits , 2012, Proceedings of the National Academy of Sciences.

[27]  L. Panlilio,et al.  Combined effects of THC and caffeine on working memory in rats , 2012, British journal of pharmacology.

[28]  T. Takano,et al.  Neuronal adenosine release, and not astrocytic ATP release, mediates feedback inhibition of excitatory activity , 2012, Proceedings of the National Academy of Sciences.

[29]  E. Cherubini,et al.  Regulation of hippocampal inhibitory circuits by nicotinic acetylcholine receptors , 2012, The Journal of physiology.

[30]  R. Dias,et al.  Enhancement of AMPA currents and GluR1 membrane expression through PKA‐coupled adenosine A2A receptors , 2012, Hippocampus.

[31]  U. Gether,et al.  Brain-derived Neurotrophic Factor (BDNF) Enhances GABA Transport by Modulating the Trafficking of GABA Transporter-1 (GAT-1) from the Plasma Membrane of Rat Cortical Astrocytes* , 2011, The Journal of Biological Chemistry.

[32]  P. Agostinho,et al.  Enhanced role of adenosine A2A receptors in the modulation of LTP in the rat hippocampus upon ageing , 2011, The European journal of neuroscience.

[33]  R. Franco,et al.  Reinforcing and neurochemical effects of cannabinoid CB1 receptor agonists, but not cocaine, are altered by an adenosine A2A receptor antagonist , 2011, Addiction biology.

[34]  J. Ribeiro,et al.  Modulation of brain-derived neurotrophic factor (BDNF) actions in the nervous system by adenosine A(2A) receptors and the role of lipid rafts. , 2011, Biochimica et biophysica acta.

[35]  Luísa V. Lopes,et al.  Enhancement of LTP in Aged Rats is Dependent on Endogenous BDNF , 2011, Neuropsychopharmacology.

[36]  S. Yao,et al.  Molecular biology of nucleoside transporters and their distributions and functions in the brain. , 2011, Current topics in medicinal chemistry.

[37]  Samira G. Ferreira,et al.  Pre‐synaptic adenosine A2A receptors control cannabinoid CB1 receptor‐mediated inhibition of striatal glutamatergic neurotransmission , 2011, Journal of neurochemistry.

[38]  P. Somogyi,et al.  Quantitative localisation of synaptic and extrasynaptic GABAA receptor subunits on hippocampal pyramidal cells by freeze‐fracture replica immunolabelling , 2010, The European journal of neuroscience.

[39]  J. Ribeiro,et al.  Modulation and metamodulation of synapses by adenosine , 2010, Acta physiologica.

[40]  R. Cunha,et al.  Caffeine, adenosine receptors, and synaptic plasticity. , 2010, Journal of Alzheimer's disease : JAD.

[41]  D. Attwell,et al.  Do astrocytes really exocytose neurotransmitters? , 2010, Nature Reviews Neuroscience.

[42]  Talia N. Lerner,et al.  Endocannabinoid Signaling Mediates Psychomotor Activation by Adenosine A2A Antagonists , 2010, The Journal of Neuroscience.

[43]  S. Masino,et al.  Control of Cannabinoid CB1 Receptor Function on Glutamate Axon Terminals by Endogenous Adenosine Acting at A1 Receptors , 2010, The Journal of Neuroscience.

[44]  J. Ribeiro,et al.  Cannabinoid CB(1) and adenosine A(1) receptors independently inhibit hippocampal synaptic transmission. , 2009, European journal of pharmacology.

[45]  B. Fredholm,et al.  LTP impairment by fractalkine/CX3CL1 in mouse hippocampus is mediated through the activity of adenosine receptor type 3 (A3R) , 2009, Journal of Neuroimmunology.

[46]  M. Manfredi,et al.  Blockage of A2A and A3 adenosine receptors decreases the desensitization of human GABAA receptors microtransplanted to Xenopus oocytes , 2009, Proceedings of the National Academy of Sciences.

[47]  C. Ledent,et al.  Adenosine A2A receptors enable the synaptic effects of cannabinoid CB1 receptors in the rodent striatum , 2009, Journal of neurochemistry.

[48]  J. Delgado-García,et al.  Adenosine A2A Receptor Modulation of Hippocampal CA3-CA1 Synapse Plasticity During Associative Learning in Behaving Mice , 2009, Neuropsychopharmacology.

[49]  J. Ribeiro,et al.  Adenosine A2A receptors enhance GABA transport into nerve terminals by restraining PKC inhibition of GAT‐1 , 2009, Journal of neurochemistry.

[50]  P. Castillo,et al.  Endocannabinoid signaling and long-term synaptic plasticity. , 2009, Annual review of physiology.

[51]  Qiang Zhou,et al.  Extracellular proteolysis by matrix metalloproteinase-9 drives dendritic spine enlargement and long-term potentiation coordinately , 2008, Proceedings of the National Academy of Sciences.

[52]  K. Hsu,et al.  A role of p38 mitogen-activated protein kinase in adenosine A1 receptor-mediated synaptic depotentiation in area CA1 of the rat hippocampus , 2008, Molecular Brain.

[53]  J. Ribeiro,et al.  Brain-derived neurotrophic factor inhibits GABA uptake by the rat hippocampal nerve terminals , 2008, Brain Research.

[54]  A. Pinto-Duarte,et al.  Postsynaptic Action of Brain-Derived Neurotrophic Factor Attenuates α7 Nicotinic Acetylcholine Receptor-Mediated Responses in Hippocampal Interneurons , 2008, The Journal of Neuroscience.

[55]  J. Ribeiro,et al.  Enhancement of long-term potentiation by brain-derived neurotrophic factor requires adenosine A2A receptor activation by endogenous adenosine , 2008, Neuropharmacology.

[56]  J. Ribeiro,et al.  A1 and A2A receptor activation by endogenous adenosine is required for VIP enhancement of K+-evoked [3H]-GABA release from rat hippocampal nerve terminals , 2008, Neuroscience Letters.

[57]  R. Cunha,et al.  Adenosine A2A Receptors Are Essential for Long-Term Potentiation of NMDA-EPSCs at Hippocampal Mossy Fiber Synapses , 2008, Neuron.

[58]  J. F. Chen,et al.  Adenosine A2A receptors are required for normal BDNF levels and BDNF‐induced potentiation of synaptic transmission in the mouse hippocampus , 2007, Journal of neurochemistry.

[59]  Geoffrey Burnstock,et al.  Physiology and pathophysiology of purinergic neurotransmission. , 2007, Physiological reviews.

[60]  F. Ciruela,et al.  Striatal Adenosine A2A and Cannabinoid CB1 Receptors Form Functional Heteromeric Complexes that Mediate the Motor Effects of Cannabinoids , 2007, Neuropsychopharmacology.

[61]  A. Marowsky,et al.  Shift of adenosine kinase expression from neurons to astrocytes during postnatal development suggests dual functionality of the enzyme , 2006, Neuroscience.

[62]  Vivien Chevaleyre,et al.  Endocannabinoid-mediated synaptic plasticity in the CNS. , 2006, Annual review of neuroscience.

[63]  G. Burnstock,et al.  Purinergic signalling in neuron–glia interactions , 2006, Nature Reviews Neuroscience.

[64]  Graeme Milligan,et al.  Presynaptic Control of Striatal Glutamatergic Neurotransmission by Adenosine A1–A2A Receptor Heteromers , 2006, The Journal of Neuroscience.

[65]  T. Nabeshima,et al.  α7 Nicotinic acetylcholine receptor as a target to rescue deficit in hippocampal LTP induction in β-amyloid infused rats , 2006, Neuropharmacology.

[66]  R. Cunha,et al.  Adenosine A2A receptors and metabotropic glutamate 5 receptors are co‐localized and functionally interact in the hippocampus: a possible key mechanism in the modulation of N‐methyl‐d‐aspartate effects , 2005, Journal of neurochemistry.

[67]  Jozsef Csicsvari,et al.  Complementary Roles of Cholecystokinin- and Parvalbumin-Expressing GABAergic Neurons in Hippocampal Network Oscillations , 2005, The Journal of Neuroscience.

[68]  Dimitri M Kullmann,et al.  Hebbian LTP in feed-forward inhibitory interneurons and the temporal fidelity of input discrimination , 2005, Nature Neuroscience.

[69]  G. Lynch,et al.  Long-Term Potentiation Is Impaired in Middle-Aged Rats: Regional Specificity and Reversal by Adenosine Receptor Antagonists , 2005, The Journal of Neuroscience.

[70]  M. Parmentier,et al.  Adenosine A2A receptors are involved in physical dependence and place conditioning induced by THC , 2004, The European journal of neuroscience.

[71]  E. Soriano,et al.  Distribution of CNT2 and ENT1 transcripts in rat brain: selective decrease of CNT2 mRNA in the cerebral cortex of sleep‐deprived rats , 2004, Journal of neurochemistry.

[72]  J. Ribeiro,et al.  Activation of Adenosine A2A Receptor Facilitates Brain-Derived Neurotrophic Factor Modulation of Synaptic Transmission in Hippocampal Slices , 2004, The Journal of Neuroscience.

[73]  R. Cunha,et al.  Enhanced adenosine A2A receptor facilitation of synaptic transmission in the hippocampus of aged rats. , 2003, Journal of neurophysiology.

[74]  M. Parmentier,et al.  Increase of morphine withdrawal in mice lacking A2a receptors and no changes in CB1/A2a double knockout mice , 2003, The European journal of neuroscience.

[75]  B. Fredholm,et al.  Adenosine A2A receptor facilitation of hippocampal synaptic transmission is dependent on tonic A1 receptor inhibition , 2002, Neuroscience.

[76]  K. Hsu,et al.  Characterization of the Mechanism Underlying the Reversal of Long Term Potentiation by Low Frequency Stimulation at Hippocampal CA1 Synapses* 210 , 2001, The Journal of Biological Chemistry.

[77]  J. Ribeiro,et al.  Activation of Synaptic NMDA Receptors by Action Potential-Dependent Release of Transmitter during Hypoxia Impairs Recovery of Synaptic Transmission on Reoxygenation , 2001, The Journal of Neuroscience.

[78]  D. Ji,et al.  Timing and Location of Nicotinic Activity Enhances or Depresses Hippocampal Synaptic Plasticity , 2001, Neuron.

[79]  Alexandre de Mendonça,et al.  A functional role for adenosine A3 receptors: modulation of synaptic plasticity in the rat hippocampus , 2001, Neuroscience Letters.

[80]  J. Ribeiro,et al.  Fine-tuning neuromodulation by adenosine. , 2000, Trends in pharmacological sciences.

[81]  Helmut L. Haas,et al.  Functions of neuronal adenosine receptors , 2000, Naunyn-Schmiedeberg's Archives of Pharmacology.

[82]  Y. Kuroda,et al.  Effects of A1 and A2 Adenosine Receptor Antagonists on the Induction and Reversal of Long-Term Potentiation in Guinea Pig Hippocampal Slices of CA1 Neurons , 2000, Cellular and Molecular Neurobiology.

[83]  R. Cunha,et al.  Purinergic modulation of [3H]GABA release from rat hippocampal nerve terminals , 2000, Neuropharmacology.

[84]  Alexandre de Mendonça,et al.  Adenosine modulates synaptic plasticity in hippocampal slices from aged rats , 1999, Brain Research.

[85]  K. Hsu,et al.  A Role for Extracellular Adenosine in Time-Dependent Reversal of Long-Term Potentiation by Low-Frequency Stimulation at Hippocampal CA1 Synapses , 1999, The Journal of Neuroscience.

[86]  Y. Sekino,et al.  Cellular localization of adenosine A1 receptors in rat forebrain: Immunohistochemical analysis using adenosine A1 receptor‐specific monoclonal antibody , 1999, The Journal of comparative neurology.

[87]  J. A. Dani,et al.  Nicotinic Stimulation Produces Multiple Forms of Increased Glutamatergic Synaptic Transmission , 1998, The Journal of Neuroscience.

[88]  E. Albuquerque,et al.  Neuronal Nicotinic Acetylcholine Receptor Activation Modulates g-Aminobutyric Acid Release from CA 1 Neurons of Rat Hippocampal Slices 1 , 1997 .

[89]  D. Mogul,et al.  NMDA-Independent LTP by adenosine A2 receptor-mediated postsynaptic AMPA potentiation in hippocampus. , 1997, Journal of neurophysiology.

[90]  D. Mogul,et al.  A role for adenosine A2 receptors in the induction of long-term potentiation in the CA1 region of rat hippocampus , 1997, Brain Research.

[91]  Z. Bashir,et al.  A role for adenosine in the regulation of long-term depression in the adult rat hippocampus in vitro , 1997, Neuroscience Letters.

[92]  Z. Bashir,et al.  Endogenous Adenosine Attenuates Long-term Depression and Depotentiation in the CA1 Region of the Rat Hippocampus , 1997, Neuropharmacology.

[93]  A. de Mendonça,et al.  Adenosine and neuronal plasticity. , 1996, Life sciences.

[94]  E. Vizi,et al.  Preferential Release of ATP and Its Extracellular Catabolism as a Source of Adenosine upon High‐ but Not Low‐Frequency Stimulation of Rat Hippocampal Slices , 1996, Journal of neurochemistry.

[95]  R. Gray,et al.  Hippocampal synaptic transmission enhanced by low concentrations of nicotine , 1996, Nature.

[96]  R. Cunha,et al.  Preferential activation of excitatory adenosine receptors at rat hippocampal and neuromuscular synapses by adenosine formed from released adenine nucleotides , 1996, British journal of pharmacology.

[97]  A. Gubitz,et al.  Tissue distribution of adenosine receptor mRNAs in the rat , 1996, British journal of pharmacology.

[98]  A. Mendonça,et al.  Inhibition of NMDA receptor-mediated currents in isolated rat hippocampal neurones by adenosine A1 receptor activation , 1995 .

[99]  S. Rivkees,et al.  Immunohistochemical detection of A1 adenosine receptors in rat brain with emphasis on localization in the hippocampal formation, cerebral cortex, cerebellum, and basal ganglia , 1995, Brain Research.

[100]  A. Mendonça,et al.  Endogenous adenosine modulates long-term potentiation in the hippocampus , 1994, Neuroscience.

[101]  B. Fredholm,et al.  Evidence for functionally important adenosine A2a receptors in the rat hippocampus , 1994, Brain Research.

[102]  Gary Lynch,et al.  Reversal of LTP by theta frequency stimulation , 1993, Brain Research.

[103]  Y. Kuroda,et al.  Adenosine A2 receptor antagonist facilitates the reversal of long-term potentiation (depotentiation) of evoked postsynaptic potentials but inhibits that of population spikes in hippocampal CA1 neurons , 1992, Neuroscience Letters.

[104]  G. Lynch,et al.  Factors regulating the magnitude of long-term potentiation induced by theta pattern stimulation , 1992, Brain Research.

[105]  J. Ribeiro,et al.  Evidence for the presence of excitatory A2 adenosine receptors in the rat hippocampus , 1992, Neuroscience Letters.

[106]  S. Schiffmann,et al.  Distribution of adenosine A2 receptor mRNA in the human brain , 1991, Neuroscience Letters.

[107]  O. Barnabei,et al.  Adenosine and Glutamate Modulate Each Other's Release from Rat Hippocampal Synaptosomes , 1991, Journal of neurochemistry.

[108]  H. Kamiya Some pharmacological differences between hippocampal excitatory and inhibitory synapses in transmitter release: An in vitro study , 1991, Synapse.

[109]  P. Correia‐de‐Sá,et al.  Inhibitory and excitatory effects of adenosine receptor agonists on evoked transmitter release from phrenic nerve endings of the rat , 1991, British journal of pharmacology.

[110]  S. Rothman,et al.  Adenosine inhibits excitatory but not inhibitory synaptic transmission in the hippocampus , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[111]  T. Teyler,et al.  Adenosine depresses excitatory but not fast inhibitory synaptic transmission in area CA1 of the rat hippocampus , 1991, Neuroscience Letters.

[112]  G. Lynch,et al.  The effects of adenosine on the development of long-term potentiation , 1990, Neuroscience Letters.

[113]  A. Mendonça,et al.  2-Chloroadenosine decreases long-term potentiation in the hippocampal CA1 area of the rat , 1990, Neuroscience Letters.

[114]  T. Stone,et al.  The inhibitory adenosine receptor at the neuromuscular junction and hippocampus of the rat: antagonism by 1,3,8‐substituted xanthines , 1990, British journal of pharmacology.

[115]  M. Reddington,et al.  Both A1 and A2a Purine Receptors Regulate Striatal Acetylcholine Release , 1990, Journal of neurochemistry.

[116]  T. Seyfried,et al.  Stimulation-dependent release of adenosine triphosphate from hippocampal slices , 1989, Brain Research.

[117]  J. Nadler,et al.  Regulation of Glutamate and Aspartate Release from Slices of the Hippocampal CA1 Area: Effects of Adenosine and Baclofen , 1988, Journal of neurochemistry.

[118]  J. Ribeiro,et al.  Adenosine receptors and calcium: Basis for proposing a third (A3) adenosine receptor , 1986, Progress in Neurobiology.

[119]  F. Pedata,et al.  Effect of Adenosine, Adenosine Derivatives, and Caffeine on Acetylcholine Release from Brain Synaptosomes: Interaction with Muscarinic Autoregulatory Mechanisms , 1986, Journal of neurochemistry.

[120]  A. Dolphin,et al.  Calcium‐dependent currents in cultured rat dorsal root ganglion neurones are inhibited by an adenosine analogue. , 1986, The Journal of physiology.

[121]  A. Dolphin,et al.  Pertussis toxin reverses adenosine inhibition of neuronal glutamate release , 1985, Nature.

[122]  R. Jackisch,et al.  Endogenous adenosine as a modulator of hippocampal acetylcholine release , 1984, Naunyn-Schmiedeberg's Archives of Pharmacology.

[123]  B. Fredholm,et al.  Adenosine receptors mediating inhibitory electrophysiological responses in rat hippocampus are different from receptors mediating cyclic AMP accumulation , 1984, Naunyn-Schmiedeberg's Archives of Pharmacology.

[124]  A. Dolphin,et al.  The adenosine agonist 2-chloroadenosine inhibits the induction of long-term potentiation of the perforant path , 1983, Neuroscience Letters.

[125]  Y. Yamada,et al.  Purification and properties of adenosine kinase from rat brain. , 1980, Biochimica et biophysica acta.

[126]  Margarete Müller,et al.  ADENOSINE REGULATES VIA TWO DIFFERENT TYPES OF RECEPTORS, THE ACCUMULATION OF CYCLIC AMP IN CULTURED BRAIN CELLS , 1979, Journal of neurochemistry.

[127]  J. Ribeiro,et al.  Adenosine and adenosine triphosphate decrease 45Ca uptake by synaptosomes stimulated by potassium. , 1979, Biochemical pharmacology.

[128]  B. Fredholm,et al.  Inhibition of acetylcholine release in guinea pig ileum by adenosine. , 1978, Acta physiologica Scandinavica.

[129]  C. Londos,et al.  Two distinct adenosine-sensitive sites on adenylate cyclase. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[130]  J. Ribeiro,et al.  THE EFFECTS OF ADENOSINE TRIPHOSPHATE AND ADENOSINE DIPHOSPHATE ON TRANSMISSION AT THE RAT AND FROG NEUROMUSCULAR JUNCTIONS , 1975, British journal of pharmacology.

[131]  E. M. Silinsky On the association between transmitter secretion and the release of adenine nucleotides from mammalian motor nerve terminals. , 1975, The Journal of physiology.

[132]  B. L. Ginsborg,et al.  The effect of adenosine on the release of the transmitter from the phrenic nerve of the rat , 1972, The Journal of physiology.

[133]  A. Szent-Györgyi,et al.  The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart 1 , 1929, The Journal of physiology.

[134]  B. Lu,et al.  BDNF and synaptic plasticity, cognitive function, and dysfunction. , 2014, Handbook of experimental pharmacology.

[135]  C. Limatola,et al.  Homeostatic control of synaptic activity by endogenous adenosine is mediated by adenosine kinase. , 2014, Cerebral cortex.

[136]  J. Pratt,et al.  Regulation of Hippocampal Cannabinoid CB1 Receptor Actions by Adenosine A1 Receptors and Chronic Caffeine Administration: Implications for the Effects of Δ9-Tetrahydrocannabinol on Spatial Memory , 2011, Neuropsychopharmacology.

[137]  Ana M Sebastião,et al.  Adenosine receptors and the central nervous system. , 2009, Handbook of experimental pharmacology.

[138]  C. Pittenger,et al.  Stress, Depression, and Neuroplasticity: A Convergence of Mechanisms , 2008, Neuropsychopharmacology.

[139]  S. Iversen,et al.  Handbook of Psychopharmacology , 1988, Springer US.

[140]  J. Daly Role of Cyclic Nucleotides in the Nervous System , 1975 .

[141]  A Sattin,et al.  The effect of adenosine and adenine nucleotides on the cyclic adenosine 3', 5'-phosphate content of guinea pig cerebral cortex slices. , 1970, Molecular pharmacology.