Self-trapped excitons in LH2 bacteriochlorophyll–protein complexes under high pressure

[1]  A. Freiberg,et al.  Exciton Self Trapping in One-Dimensional Photosynthetic Antennas , 2001 .

[2]  T. Pullerits,et al.  Short-Range Exciton Couplings in LH2 Photosynthetic Antenna Proteins Studied by High Hydrostatic Pressure Absorption Spectroscopy , 2001 .

[3]  N. Woodbury,et al.  Unraveling Exciton Relaxation and Energy Transfer in LH2 Photosynthetic Antennas , 2000 .

[4]  Tõnu Pullerits,et al.  Photosynthetic light-harvesting: Reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit , 1999 .

[5]  R. Cogdell,et al.  Hole-Burning and Absorption Studies of the LH1 Antenna Complex of Purple Bacteria: Effects of Pressure and Temperature , 1998 .

[6]  R. Jankowiak,et al.  Comparison of the LH2 Antenna Complexes of Rhodopseudomonas acidophila (Strain 10050) and Rhodobacter sphaeroides by High-Pressure Absorption, High-Pressure Hole Burning, and Temperature-Dependent Absorption Spectroscopies , 1997 .

[7]  N. W. Isaacs,et al.  Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria , 1995, Nature.

[8]  H. Sumi,et al.  Two Types of Self-Trapped States for Excitons in One Dimension , 1994 .

[9]  A. Freiberg,et al.  Pressure effects on spectra of photosynthetic light-harvesting pigment-protein complexes , 1993 .

[10]  R. Jaaniso,et al.  Spectral hole burning at high hydrostatic pressure , 1991 .

[11]  U. Rößler,et al.  Destabilization of a self-trapped exciton in a quasi-one-dimensional semiconductor: Mg[Pt ( CN ) 4 ]·7 H 2 O with hydrostatic pressure , 1982 .

[12]  R. Knox,et al.  Theory of Molecular Excitons , 1964 .

[13]  T. Holstein,et al.  Studies of polaron motion: Part II. The “small” polaron , 1959 .