Crank-Nicolson ADI Galerkin finite element method for two-dimensional fractional FitzHugh-Nagumo monodomain model
暂无分享,去创建一个
Jiye Yang | Yifa Tang | Weiping Bu | Yingchuan Wu | Yifa Tang | W. Bu | Jiye Yang | Yingchuan Wu
[1] David A. Benson,et al. Space‐fractional advection‐dispersion equations with variable parameters: Diverse formulas, numerical solutions, and application to the Macrodispersion Experiment site data , 2007 .
[2] Fawang Liu,et al. Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation , 2010, Numerical Algorithms.
[3] I. Podlubny. Fractional differential equations , 1998 .
[4] Fawang Liu,et al. Galerkin finite element approximation of symmetric space-fractional partial differential equations , 2010, Appl. Math. Comput..
[5] Fawang Liu,et al. A numerical method for the fractional Fitzhugh–Nagumo monodomain model , 2013 .
[6] F. Mainardi,et al. The fundamental solution of the space-time fractional diffusion equation , 2007, cond-mat/0702419.
[7] Zhengang Zhao,et al. A Fully Discrete Galerkin Method for a Nonlinear Space-Fractional Diffusion Equation , 2011 .
[8] D. Benson,et al. Time and space nonlocalities underlying fractional-derivative models: Distinction and literature review of field applications , 2009 .
[9] K. Miller,et al. An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .
[10] F. Mainardi. The fundamental solutions for the fractional diffusion-wave equation , 1996 .
[11] Graeme Fairweather,et al. An alternating direction Galerkin method for a class of second-order hyperbolic equations in two space variables , 1991 .
[12] J. P. Roop. Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R 2 , 2006 .
[13] Yong Zhou. Basic Theory of Fractional Differential Equations , 2014 .
[14] Jianfei Huang,et al. Two finite difference schemes for time fractional diffusion-wave equation , 2013, Numerical Algorithms.
[15] Fawang Liu,et al. A Crank-Nicolson ADI Spectral Method for a Two-Dimensional Riesz Space Fractional Nonlinear Reaction-Diffusion Equation , 2014, SIAM J. Numer. Anal..
[16] Ningming Nie,et al. Solving spatial-fractional partial differential diffusion equations by spectral method , 2014 .
[17] S. K. Chung,et al. Finite Element Solutions for the Space Fractional Diffusion Equation with a Nonlinear Source Term , 2012 .
[18] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[19] Yangquan Chen,et al. Computers and Mathematics with Applications Numerical Approximation of Nonlinear Fractional Differential Equations with Subdiffusion and Superdiffusion , 2022 .
[20] Weihua Deng,et al. Second-order LOD multigrid method for multidimensional Riesz fractional diffusion equation , 2013, BIT Numerical Mathematics.
[21] Norbert Heuer,et al. Numerical Approximation of a Time Dependent, Nonlinear, Space-Fractional Diffusion Equation , 2007, SIAM J. Numer. Anal..
[22] Hong Wang,et al. A Fast Finite Difference Method for Two-Dimensional Space-Fractional Diffusion Equations , 2012, SIAM J. Sci. Comput..
[23] Graeme Fairweather,et al. Alternating-Direction Galerkin Methods for Parabolic and Hyperbolic Problems on Rectangular Polygons , 1975 .
[24] V. Ervin,et al. Variational formulation for the stationary fractional advection dispersion equation , 2006 .
[25] K. Burrage,et al. Fourier spectral methods for fractional-in-space reaction-diffusion equations , 2014 .