We have studied shrinkage-crack patterns which form when a thin layer of an alumina/water slurry dries. Both isotropic and directional drying were studied. The dynamics of the pattern formation process and the geometric properties of the isotropic crack patterns are similar to what is expected from recent models, assuming weak disorder. There is some evidence of a gradual increase in disorder as the drying layer become thinner, but no sudden transition, in contrast to what has been seen in previous experiments. The morphology of the crack patterns is influenced by drying gradients and front propagation effects, with sharp gradients having a strong orienting and ordering effect.