Optical bright and dark soliton solutions for coupled nonlinear Schrödinger (CNLS) equations by the variational iteration method

[1]  A. Wazwaz The integrable time-dependent sine-Gordon equation with multiple optical kink solutions , 2019, Optik.

[2]  A. Degasperis,et al.  Rogue Wave Type Solutions and Spectra of Coupled Nonlinear Schrödinger Equations , 2019, Fluids.

[3]  A. Wazwaz,et al.  Optical Gaussons for nonlinear logarithmic Schrödinger equations via the variational iteration method , 2019, Optik.

[4]  A. Wazwaz,et al.  Bright – dark optical solitons for Schrödinger-Hirota equation with variable coefficients , 2019, Optik.

[5]  A. Biswas Conservation laws for optical solitons with anti-cubic and generalized anti-cubic nonlinearities , 2019, Optik.

[6]  A. Biswas,et al.  Akhmediev breathers, Peregrine solitons and Kuznetsov-Ma solitons in optical fibers and PCF by Laplace-Adomian decomposition method , 2018, Optik.

[7]  A. Biswas,et al.  Application of semi-inverse variational principle to cubic-quartic optical solitons with kerr and power law nonlinearity , 2018, Optik.

[8]  A. Biswas Chirp-free bright optical soliton perturbation with Chen–Lee–Liu equation by traveling wave hypothesis and semi-inverse variational principle , 2018, Optik.

[9]  A. Wazwaz,et al.  Painlevé analysis and invariant solutions of generalized fifth-order nonlinear integrable equation , 2018, Nonlinear Dynamics.

[10]  A. Wazwaz,et al.  Dynamical analysis of lump solutions for (3 + 1) dimensional generalized KP–Boussinesq equation and Its dimensionally reduced equations , 2018, Physica Scripta.

[11]  M. M. Babatin,et al.  Conservation laws for Gerdjikov-Ivanov equation in nonlinear fiber optics and PCF , 2017 .

[12]  Lakhveer Kaur,et al.  Kawahara equation and modified Kawahara equation with time dependent coefficients: symmetry analysis and generalized ‐expansion method , 2013 .

[13]  C. M. Khalique,et al.  Solutions and conservation laws of Benjamin–Bona–Mahony–Peregrine equation with power-law and dual power-law nonlinearities , 2013 .

[14]  Dumitru Mihalache,et al.  Models of few optical cycle solitons beyond the slowly varying envelope approximation , 2013 .

[15]  A. Wazwaz MULTIPLE SOLITON SOLUTIONS FOR TWO INTEGRABLE COUPLINGS OF THE MODIFIED KORTEWEG-DE VRIES EQUATION , 2013 .

[16]  N. F. Smyth,et al.  Reorientational versus Kerr dark and gray solitary waves using modulation theory. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  A. Biswas,et al.  Dark solitons for a generalized nonlinear Schrödinger equation with parabolic law and dual‐power law nonlinearities , 2011 .

[18]  V.,et al.  On the theory of two-dimensional stationary self-focusing of electromagnetic waves , 2011 .

[19]  Anjan Biswas,et al.  Bright and dark solitons of the generalized nonlinear Schrödinger’s equation , 2010 .

[20]  Dumitru Mihalache,et al.  Few-optical-cycle solitons: Modified Korteweg-de Vries sine-Gordon equation versus other non-slowly-varying-envelope-approximation models , 2009 .

[21]  L. Carr,et al.  Formation of a Matter-Wave Bright Soliton , 2002, Science.

[22]  R. Hulet,et al.  Formation and propagation of matter-wave soliton trains , 2002, Nature.

[23]  M. Vinoj,et al.  Nonlinear compression of optical solitons , 2001 .

[24]  Woo-Pyo Hong,et al.  Optical solitary wave solutions for the higher order nonlinear Schrödinger equation with cubic-quintic non-Kerr terms , 2001 .

[25]  S. Burger,et al.  Dark solitons in Bose-Einstein condensates , 1999, QELS 2000.

[26]  Yehuda B. Band,et al.  Optical Solitary Waves in the Higher Order Nonlinear Schrödinger Equation , 1996, patt-sol/9612004.

[27]  C. Gu,et al.  Soliton theory and its applications , 1995 .