Microrobotic platform for manipulation and flexibility measurement of individual paper fibers

This paper introduces a microrobotic platform to manipulate and characterize individual paper fibers. Mechanical characterization of individual paper fibers determines the key parameters which affect the quality of paper sheets. Current laboratory tests are based on bulk paper fiber measurements. This paper presents a microrobotic platform which is able to characterize the flexibility of individual paper fibers directly, not in bulk amount and using indirect estimations. The flexibility of three different pulp samples is measured and the experimental results are reported.

[1]  Stephen J. Eichhorn,et al.  The Young's modulus of a microcrystalline cellulose , 2001 .

[2]  Bradley J. Nelson,et al.  Investigating protein structure with a microrobotic system , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[3]  Yu Sun,et al.  Nanonewton force-controlled manipulation of biological cells using a monolithic MEMS microgripper with two-axis force feedback , 2008 .

[4]  Stefanie E. Stanzl-Tschegg,et al.  Fracture behaviour of wood and its composites. A review COST Action E35 2004–2008: Wood machining – micromechanics and fracture , 2009 .

[5]  Young-Ho Kim,et al.  An integrated bio cell processor for single embryo cell manipulation , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[6]  Kecheng Li,et al.  Measurement of wet fiber flexibility by confocal laser scanning microscopy , 2008 .

[7]  J. Mauseth Botany : An Introduction to Plant Biology , 1991 .

[8]  S. Fatikow,et al.  Automated cell characterization by a nanohandling robot station , 2007, 2007 Mediterranean Conference on Control & Automation.

[9]  T. Arai,et al.  Dexterous micromanipulation supporting cell and tissue engineering , 2005, IEEE International Symposium on Micro-NanoMechatronics and Human Science, 2005.

[10]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[11]  I. Lundström,et al.  Microrobots for micrometer-size objects in aqueous media: potential tools for single-cell manipulation. , 2000, Science.

[12]  Sergej Fatikow,et al.  Nanorobotic manipulation setup for pick-and-place handling and nondestructive characterization of carbon nanotubes , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[13]  P. Ronkanen,et al.  Microcutting of living tissue slices and stem cell colonies by using mechanical tool and liquid jet , 2008, 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics.

[14]  J. W. Provan,et al.  A procedure for measuring the flexibility of single wood-pulp fibres , 2006 .

[15]  Seppo Kuikka,et al.  Injection Guidance System for Cellular Microinjections , 2006, The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006. BioRob 2006..

[16]  W. Young,et al.  Roark's formulas for stress and strain; seventh edition , 1989 .

[17]  Karin Hofstetter,et al.  Hierarchical modelling of microstructural effects on mechanical properties of wood. A review COST Action E35 2004–2008: Wood machining – micromechanics and fracture , 2009 .

[18]  Hideaki Matsuoka,et al.  High throughput easy microinjection with a single-cell manipulation supporting robot. , 2005, Journal of biotechnology.

[19]  O. Sigmund,et al.  Rapid prototyping of nanotube-based devices using topology-optimized microgrippers , 2008, Nanotechnology.

[20]  Sergej Fatikow,et al.  A carbon nanofibre scanning probe assembled using an electrothermal microgripper , 2007 .

[21]  Yu Sun,et al.  A Fully Automated Robotic System for Microinjection of Zebrafish Embryos , 2007, PloS one.

[22]  Peter K. Allen,et al.  Visually-guided protein crystal manipulation using micromachined silicon tools , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[23]  Fumihito Arai,et al.  DESTRUCTIVE CONSTRUCTION OF NANOSTRUCTURES WITH CARBON NANOTUBES , 2002 .

[24]  C. Ververis,et al.  Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production , 2004 .

[25]  Timothy G. Rials,et al.  Nanoindentation of wood cell walls: Continuous stiffness and hardness measurements , 2007 .

[26]  Fumihito Arai,et al.  Minimally invasive micromanipulation of microbe by laser trapped micro tools , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[27]  J. Dinwoodie Wood : nature's cellular, polymeric, fibre-composite , 1989 .

[28]  Pasi Kallio,et al.  Capillary Pressure Microinjection of Living Adherent Cells: Challenges in Automation , 2006 .

[29]  Jaydev P Desai,et al.  Engineering approaches to biomanipulation. , 2007, Annual review of biomedical engineering.

[30]  Nikolai Dechev,et al.  Development of a five degree-of-freedom biomanipulator for autonomous single cell electroporation , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.