Parameter Estimation of Some Epidemic Models. The Case of Recurrent Epidemics Caused by Respiratory Syncytial Virus

The research presented in this paper addresses the problem of fitting a mathematical model to epidemic data. We propose an implementation of the Landweber iteration to solve locally the arising parameter estimation problem. The epidemic models considered consist of suitable systems of ordinary differential equations. The results presented suggest that the inverse problem approach is a reliable method to solve the fitting problem. The predictive capabilities of this approach are demonstrated by comparing simulations based on estimation of parameters against real data sets for the case of recurrent epidemics caused by the respiratory syncytial virus in children.

[1]  G. Serio,et al.  A generalization of the Kermack-McKendrick deterministic epidemic model☆ , 1978 .

[2]  Herbert W. Hethcote,et al.  An epidemiological model with a delay and a nonlinear incidence rate , 1989, Journal of mathematical biology.

[3]  H. Hethcote,et al.  Some epidemiological models with nonlinear incidence , 1991, Journal of mathematical biology.

[4]  M. Hanke,et al.  A convergence analysis of the Landweber iteration for nonlinear ill-posed problems , 1995 .

[5]  Michael Y. Li,et al.  Global stability for the SEIR model in epidemiology. , 1995, Mathematical biosciences.

[6]  C. Struchiner,et al.  Rate estimation from prevalence information on a simple epidemiologic model for health interventions. , 1996, Theoretical population biology.

[7]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[8]  James Watmough,et al.  A simple SIS epidemic model with a backward bifurcation , 2000, Journal of mathematical biology.

[9]  A. Weber,et al.  Modeling epidemics caused by respiratory syncytial virus (RSV). , 2001, Mathematical biosciences.

[10]  Elaheh Pourabbas,et al.  A method to estimate the incidence of communicable diseases under seasonal fluctuations with application to cholera , 2001, Appl. Math. Comput..

[11]  J. Watmough,et al.  Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. , 2002, Mathematical biosciences.

[12]  I. A. Moneim,et al.  SIRS Epidemic Model and Simulations Using Different Types of Seasonal Contact Rate , 2003 .

[13]  Willy Govaerts,et al.  MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs , 2003, TOMS.

[14]  Shigui Ruan,et al.  Dynamical behavior of an epidemic model with a nonlinear incidence rate , 2003 .

[15]  M. E. Alexander,et al.  Periodicity in an epidemic model with a generalized non-linear incidence. , 2004, Mathematical biosciences.

[16]  Ignacio E. Grossmann,et al.  Retrospective on optimization , 2004, Comput. Chem. Eng..

[17]  Y. N. Kyrychko,et al.  Global properties of a delayed SIR model with temporary immunity and nonlinear incidence rate , 2005 .

[18]  M. R. Osborne,et al.  Parameter estimation of ordinary differential equations , 2005 .

[19]  Rodolphe Thiébaut,et al.  A multistate approach for estimating the incidence of human immunodeficiency virus by using data from a prevalent cohort study , 2005 .

[20]  G F Medley,et al.  Dynamical behaviour of epidemiological models with sub-optimal immunity and nonlinear incidence , 2005, Journal of mathematical biology.

[21]  Philip K Maini,et al.  Non-linear incidence and stability of infectious disease models. , 2005, Mathematical medicine and biology : a journal of the IMA.

[22]  Murray E. Alexander,et al.  Bifurcation Analysis of an SIRS Epidemic Model with Generalized Incidence , 2005, SIAM J. Appl. Math..

[23]  Wendi Wang,et al.  Epidemic models with nonlinear infection forces. , 2005, Mathematical biosciences and engineering : MBE.

[24]  Jiguo Cao,et al.  Parameter estimation for differential equations: a generalized smoothing approach , 2007 .

[25]  Chunming Wang,et al.  Transmission electron microscopy of martensite/austenite islands in pipeline steel X70 , 2006 .

[26]  John E Banks,et al.  Estimation of Dynamic Rate Parameters in Insect Populations Undergoing Sublethal Exposure to Pesticides , 2007, Bulletin of mathematical biology.

[27]  Shigui Ruan,et al.  Global analysis of an epidemic model with nonmonotone incidence rate , 2006, Mathematical Biosciences.