Pair correlations in low-lying T =0 states of odd-odd nuclei with six nucleons

[1]  P. Fallon,et al.  Properties of isoscalar-pair condensates , 2016, 1607.06593.

[2]  R. Wyss,et al.  N = Z nuclei: a laboratory for neutron–proton collective mode , 2016, 1603.07296.

[3]  Y. M. Zhao,et al.  Nucleon-pair approximations for low-lying states of even-even N=Z nuclei , 2015 .

[4]  A. Arima,et al.  Nucleon-pair approximation to the nuclear shell model , 2014 .

[5]  Y. M. Zhao,et al.  Nucleon-pair approximation of low-lying states forN=Znuclei , 2014 .

[6]  A. Macchiavelli,et al.  Overview of neutron-proton pairing , 2014, 1405.1652.

[7]  P. Isacker NEUTRON–PROTON PAIRS IN NUCLEI , 2013, 1310.5090.

[8]  K. Neergård Cooperation of anti-aligning and aligning shell-model forces for N=Z , 2013 .

[9]  Y. M. Zhao,et al.  Spin-aligned isoscalar pair correlation in 96 Cd, 94 Ag, and 92 Pd , 2013 .

[10]  A. Arima,et al.  Nucleon-pair approximation of the shell model with isospin symmetry , 2013 .

[11]  C. Qi Spin-Aligned Neutron-Proton Pair Coupling Scheme , 2012 .

[12]  P. Isacker Aligned neutron-proton pairs in N=Z nuclei , 2012, 1207.1581.

[13]  L. Coraggio,et al.  g 9/2 nuclei and neutron-proton interaction , 2012, 1203.3673.

[14]  R. Liotta,et al.  Multistep shell model description of spin-aligned neutron-proton pair coupling: The formalism , 2011, 1108.0555.

[15]  P. Isacker,et al.  Spin-aligned neutron-proton pairs in N = Z nuclei , 2011, 1103.3754.

[16]  B. Cederwall,et al.  SPIN-ALIGNED NEUTRON-PROTON PAIR MODE IN ATOMIC NUCLEI , 2011, 1101.4046.

[17]  G. Jaworski,et al.  Evidence for a spin-aligned neutron–proton paired phase from the level structure of 92Pd , 2011, Nature.

[18]  M. Hjorth-Jensen,et al.  New effective interaction for f5pg9-shell nuclei , 2009 .

[19]  B. A. Brown,et al.  New USD Hamiltonians for the sd shell , 2006 .

[20]  P. Isacker,et al.  The role of isospin symmetry in collective nuclear structure , 2006 .

[21]  F. Nowacki,et al.  The shell model as a unified view of nuclear structure , 2004, nucl-th/0402046.

[22]  B. A. Brown,et al.  New effective interaction for pf-shell nuclei and its implications for the stability of the N = Z = 28 closed core , 2004, nucl-th/0402079.

[23]  M. Hjorth-Jensen,et al.  Pairing in Nuclear Systems: From Neutron Stars to Finite Nuclei , 2002, nucl-th/0210033.

[24]  S. Yamaji,et al.  Nucleon-pair approximation of the shell model: Unified formalism for both odd and even systems , 2000 .

[25]  Jin-quan Chen Nucleon-pair shell model: Formalism and special cases , 1997 .

[26]  Dufour,et al.  Realistic collective nuclear Hamiltonian. , 1995, Physical review. C, Nuclear physics.

[27]  A. Zuker On the microscopic derivation of a mass formula , 1994 .

[28]  Jin-quan Chen The Wick theorem for coupled fermion clusters , 1993 .

[29]  A. Klein,et al.  Factorization of commutators: The Wick theorem for coupled operators , 1993 .

[30]  Y. K. Gambhir,et al.  The broken pair model for nuclei and its recent applications , 1988 .

[31]  K. Ogawa Shell-model calculations of high-spin isomers in neutron-deficient 1g/sub 9/2/-shell nuclei , 1983 .

[32]  Y. K. Gambhir,et al.  Generalized broken pair approximation: A viable alternative to the shell model for sphercal nuclei , 1981 .

[33]  Y. K. Gambhir,et al.  Number-conserving approximation to the shell model , 1969 .

[34]  K. Helmers Symplectic invariants and flowers' classification of shell model states , 1961 .

[35]  B. H. Flowers Studies in jj-coupling. I. Classification of nuclear and atomic states , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.