Bäcklund transformations, Lax system, conservation laws and multisoliton solutions for Jimbo-Miwa equation with Bell-polynomials

Abstract Based on binary Bell polynomial approach, the bilinear equation and B a ¨ cklund transformations for (3+1)-dimensional Jimbo–Miwa equation are obtained. By virtue of Cole–Hopf transformation, Lax system is constructed by direct linearization of coupled system of binary Bell polynomials. Furthermore, infinite conservation laws are obtained from two field condition in quick and natural way. Finally, a test function of extended three wave method is used to construct multisoliton solutions via bilinear equation.

[1]  Engui Fan,et al.  The integrability of nonisospectral and variable-coefficient KdV equation with binary Bell polynomials , 2011 .

[2]  Abdul-Majid Wazwaz,et al.  Multiple-soliton solutions for the Calogero-Bogoyavlenskii-Schiff, Jimbo-Miwa and YTSF equations , 2008, Appl. Math. Comput..

[3]  Johan Springael,et al.  On a direct procedure for the disclosure of Lax pairs and Bäcklund transformations , 2001 .

[4]  Hon-Wah Tam,et al.  SOLITON SOLUTIONS TO THE JIMBO-MIWA EQUATIONS AND THE FORDY-GIBBONS-JIMBO-MIWA EQUATION , 1999 .

[5]  Donglong Li,et al.  New exact solutions for the (2 + 1)-dimensional Sawada–Kotera equation , 2012 .

[6]  Bo Tian,et al.  Bell-polynomial manipulations on the Bäcklund transformations and Lax pairs for some soliton equations with one Tau-function , 2010 .

[7]  M. Wadati,et al.  Relationships among Inverse Method, Bäcklund Transformation and an Infinite Number of Conservation Laws , 1975 .

[8]  Yun-Hu Wang,et al.  Integrability for the generalised variable-coefficient fifth-order Korteweg-de Vries equation with Bell polynomials , 2014, Appl. Math. Lett..

[9]  Ryogo Hirota,et al.  A New Form of Bäcklund Transformations and Its Relation to the Inverse Scattering Problem , 1974 .

[10]  Yi-Tian Gao,et al.  Bell-polynomial application and multi-soliton solutions for the generalized variable-coefficient Drinfeld–Sokolov–Satsuma–Hirota system in fluids and plasmas , 2013 .

[11]  Kimiaki Konno,et al.  Conservation Laws of Nonlinear-Evolution Equations , 1974 .

[12]  M. Tabor,et al.  The Painlevé property for partial differential equations , 1983 .

[13]  Yi Qin,et al.  Bell-polynomial approach applied to the seventh-order Sawada-Kotera-Ito equation , 2014, Appl. Math. Comput..

[14]  Engui Fan,et al.  An algebraic method for finding a series of exact solutions to integrable and nonintegrable nonlinea , 2003 .

[15]  Shou-Fu Tian,et al.  On Bell polynomials approach to the integrability of a (3+1)-dimensional generalized Kadomtsev-Petviashvili equation , 2015 .

[16]  Ryogo Hirota,et al.  Direct method of finding exact solutions of nonlinear evolution equations , 1976 .

[17]  Engui Fan,et al.  Binary Bell polynomial approach to the non-isospectral and variable-coefficient KP equations , 2012 .

[18]  Xiao-yan Tang,et al.  Variable separation solutions for the (3 + 1)-dimensional Jimbo-Miwa equation , 2006 .

[19]  Wenxiu Ma,et al.  A transformed rational function method and exact solutions to the 3+1 dimensional Jimbo–Miwa equation , 2009, 0903.5337.

[20]  Yong Chen,et al.  Binary Bell polynomial manipulations on the integrability of a generalized (2+1) -dimensional Korteweg–de Vries equation , 2013 .

[21]  Johan Springael,et al.  Soliton Equations and Simple Combinatorics , 2008 .

[22]  Alfred Ramani,et al.  Are all the equations of the Kadomtsev–Petviashvili hierarchy integrable? , 1986 .

[23]  M. Jimbo,et al.  Solitons and Infinite Dimensional Lie Algebras , 1983 .

[24]  J. Nimmo,et al.  On the combinatorics of the Hirota D-operators , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.