Functional characteristics of parvalbumin‐ and cholecystokinin‐expressing basket cells

Abstract  Cortical neuronal network operations depend critically on the recruitment of GABAergic interneurons and the properties of their inhibitory output signals. Recent evidence indicates a marked difference in the signalling properties of two major types of perisomatic inhibitory interneurons, the parvalbumin‐ and the cholecystokinin‐containing basket cells. Parvalbumin‐expressing basket cells are rapidly recruited by excitatory synaptic inputs, generate high‐frequency trains of action potentials, discharge single action potentials phase‐locked to fast network oscillations and provide fast, stable and timed inhibitory output onto their target cells. In contrast, cholecystokinin‐containing basket cells are recruited in a less reliable manner, discharge at moderate frequencies with single action potentials weakly coupled to the phases of fast network oscillations and generate an asynchronous, fluctuating and less timed inhibitory output. These signalling modes are based on cell type‐dependent differences in the functional and plastic properties of excitatory input synapses, integrative qualities and in the kinetics and dynamics of inhibitory output synapses. Thus, the two perisomatic inhibitory interneuron types operate with different speed and precision and may therefore contribute differently to the operations of neuronal networks.

[1]  S. Nelson,et al.  A Resource of Cre Driver Lines for Genetic Targeting of GABAergic Neurons in Cerebral Cortex , 2011, Neuron.

[2]  N. Hájos,et al.  Cannabinoids attenuate hippocampal gamma oscillations by suppressing excitatory synaptic input onto CA3 pyramidal neurons and fast spiking basket cells , 2011, The Journal of Physiology.

[3]  Ivan Soltesz,et al.  Cell-Type-Specific CCK2 Receptor Signaling Underlies the Cholecystokinin-Mediated Selective Excitation of Hippocampal Parvalbumin-Positive Fast-Spiking Basket Cells , 2011, The Journal of Neuroscience.

[4]  R. Nicoll,et al.  Probing TARP Modulation of AMPA Receptor Conductance with Polyamine Toxins , 2011, The Journal of Neuroscience.

[5]  R. Nicoll,et al.  The Expanding Social Network of Ionotropic Glutamate Receptors: TARPs and Other Transmembrane Auxiliary Subunits , 2011, Neuron.

[6]  M. Bartos,et al.  Role of microcircuit structure and input integration in hippocampal interneuron recruitment and plasticity , 2011, Neuropharmacology.

[7]  William Wisden,et al.  Parvalbumin-positive CA1 interneurons are required for spatial working but not for reference memory , 2011, Nature Neuroscience.

[8]  M. Bartos,et al.  Associative Plasticity at Excitatory Synapses Facilitates Recruitment of Fast-Spiking Interneurons in the Dentate Gyrus , 2010, The Journal of Neuroscience.

[9]  I. Módy,et al.  Selective Reduction of Cholecystokinin-Positive Basket Cell Innervation in a Model of Temporal Lobe Epilepsy , 2010, The Journal of Neuroscience.

[10]  C. McBain,et al.  M3 Muscarinic Acetylcholine Receptor Expression Confers Differential Cholinergic Modulation to Neurochemically Distinct Hippocampal Basket Cell Subtypes , 2010, The Journal of Neuroscience.

[11]  M. Todorova,et al.  Asynchronous release of GABA via tonic cannabinoid receptor activation at identified interneuron synapses in rat CA1 , 2010, The European journal of neuroscience.

[12]  O. Paulsen,et al.  Identification of the current generator underlying cholinergically induced gamma frequency field potential oscillations in the hippocampal CA3 region , 2010, The Journal of physiology.

[13]  Peter Somogyi,et al.  Cell Type-Specific Long-Term Plasticity at Glutamatergic Synapses onto Hippocampal Interneurons Expressing either Parvalbumin or CB1 Cannabinoid Receptor , 2010, The Journal of Neuroscience.

[14]  P. Jonas,et al.  Dendritic Mechanisms Underlying Rapid Synaptic Activation of Fast-Spiking Hippocampal Interneurons , 2010, Science.

[15]  Peter Jonas,et al.  Distinct nonuniform cable properties optimize rapid and efficient activation of fast-spiking GABAergic interneurons , 2009, Proceedings of the National Academy of Sciences.

[16]  Gabor Szabo,et al.  Asynchronous Transmitter Release from Cholecystokinin-Containing Inhibitory Interneurons Is Widespread and Target-Cell Independent , 2009, The Journal of Neuroscience.

[17]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[18]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[19]  B. Alger,et al.  Synaptic Cross Talk between Perisomatic-Targeting Interneuron Classes Expressing Cholecystokinin and Parvalbumin in Hippocampus , 2009, The Journal of Neuroscience.

[20]  Ivan Soltesz,et al.  Functional Specificity of Mossy Fiber Innervation of GABAergic Cells in the Hippocampus , 2009, The Journal of Neuroscience.

[21]  M. Farrant,et al.  Selective regulation of long-form calcium-permeable AMPA receptors by an atypical TARP, γ-5 , 2009, Nature Neuroscience.

[22]  P. Somogyi,et al.  Role of Ionotropic Glutamate Receptors in Long-Term Potentiation in Rat Hippocampal CA1 Oriens-Lacunosum Moleculare Interneurons , 2009, The Journal of Neuroscience.

[23]  P. Jonas,et al.  Postnatal Differentiation of Basket Cells from Slow to Fast Signaling Devices , 2008, The Journal of Neuroscience.

[24]  P. Somogyi,et al.  Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations , 2008, Science.

[25]  M. Frotscher,et al.  Nanodomain Coupling between Ca2+ Channels and Ca2+ Sensors Promotes Fast and Efficient Transmitter Release at a Cortical GABAergic Synapse , 2008, Neuron.

[26]  D. Kullmann,et al.  Long-term synaptic plasticity in hippocampal interneurons , 2007, Nature Reviews Neuroscience.

[27]  Pablo Fuentealba,et al.  Cell Type-Specific Tuning of Hippocampal Interneuron Firing during Gamma Oscillations In Vivo , 2007, The Journal of Neuroscience.

[28]  Chris J. McBain,et al.  The Role of the GluR2 Subunit in AMPA Receptor Function and Synaptic Plasticity , 2007, Neuron.

[29]  Peter Somogyi,et al.  Anti-Hebbian Long-Term Potentiation in the Hippocampal Feedback Inhibitory Circuit , 2007, Science.

[30]  M. Moser,et al.  Pattern Separation in the Dentate Gyrus and CA3 of the Hippocampus , 2007, Science.

[31]  I. Soltesz,et al.  Postsynaptic origin of CB1‐dependent tonic inhibition of GABA release at cholecystokinin‐positive basket cell to pyramidal cell synapses in the CA1 region of the rat hippocampus , 2007, The Journal of physiology.

[32]  D. Muller,et al.  GABA Regulates Dendritic Growth by Stabilizing Lamellipodia in Newly Generated Interneurons of the Olfactory Bulb , 2006, The Journal of Neuroscience.

[33]  Massimo Scanziani,et al.  Distinct timing in the activity of cannabinoid-sensitive and cannabinoid-insensitive basket cells , 2006, Nature Neuroscience.

[34]  P. Jonas,et al.  Shunting Inhibition Improves Robustness of Gamma Oscillations in Hippocampal Interneuron Networks by Homogenizing Firing Rates , 2006, Neuron.

[35]  Jozsef Csicsvari,et al.  Complementary Roles of Cholecystokinin- and Parvalbumin-Expressing GABAergic Neurons in Hippocampal Network Oscillations , 2005, The Journal of Neuroscience.

[36]  Stefan Hefft,et al.  Asynchronous GABA release generates long-lasting inhibition at a hippocampal interneuron–principal neuron synapse , 2005, Nature Neuroscience.

[37]  Dimitri M Kullmann,et al.  Hebbian LTP in feed-forward inhibitory interneurons and the temporal fidelity of input discrimination , 2005, Nature Neuroscience.

[38]  B. Kampa,et al.  Synaptic integration in dendritic trees. , 2005, Journal of neurobiology.

[39]  K. Roche,et al.  mGluR7 Is a Metaplastic Switch Controlling Bidirectional Plasticity of Feedforward Inhibition , 2005, Neuron.

[40]  D. Lewis,et al.  Cortical inhibitory neurons and schizophrenia , 2005, Nature Reviews Neuroscience.

[41]  M. Morelli,et al.  Different responsiveness of striatonigral and striatopallidal neurons to L‐DOPA after a subchronic intermittent L‐DOPA treatment , 2005, The European journal of neuroscience.

[42]  Edward O. Mann,et al.  Perisomatic Feedback Inhibition Underlies Cholinergically Induced Fast Network Oscillations in the Rat Hippocampus In Vitro , 2005, Neuron.

[43]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[44]  Attila I Gulyás,et al.  Convergence of excitatory and inhibitory inputs onto CCK‐containing basket cells in the CA1 area of the rat hippocampus , 2004, The European journal of neuroscience.

[45]  Richard Miles,et al.  Interneuron Diversity series: Fast in, fast out – temporal and spatial signal processing in hippocampal interneurons , 2004, Trends in Neurosciences.

[46]  P. Somogyi,et al.  Large variability in synaptic n-methyl-d-aspartate receptor density on interneurons and a comparison with pyramidal-cell spines in the rat hippocampus , 2003, Neuroscience.

[47]  R. Silver,et al.  Shunting Inhibition Modulates Neuronal Gain during Synaptic Excitation , 2003, Neuron.

[48]  D. Johnston,et al.  Active dendrites, potassium channels and synaptic plasticity. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[49]  P. Rutecki,et al.  Spontaneous Seizures and Loss of Axo-Axonic and Axo-Somatic Inhibition Induced by Repeated Brief Seizures in Kindled Rats , 2003, The Journal of Neuroscience.

[50]  J. Csicsvari,et al.  Mechanisms of Gamma Oscillations in the Hippocampus of the Behaving Rat , 2003, Neuron.

[51]  M. Frotscher,et al.  Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[52]  M. Scanziani,et al.  Enforcement of Temporal Fidelity in Pyramidal Cells by Somatic Feed-Forward Inhibition , 2001, Science.

[53]  T. Freund,et al.  Electrotonic profile and passive propagation of synaptic potentials in three subpopulations of hippocampal CA1 interneurons , 2001, Neuroscience.

[54]  M. Frotscher,et al.  Rapid Signaling at Inhibitory Synapses in a Dentate Gyrus Interneuron Network , 2001, The Journal of Neuroscience.

[55]  P. Somogyi,et al.  Input‐dependent synaptic targeting of α2‐subunit‐containing GABAA receptors in synapses of hippocampal pyramidal cells of the rat , 2001, The European journal of neuroscience.

[56]  P. Jonas,et al.  Efficacy and Stability of Quantal GABA Release at a Hippocampal Interneuron–Principal Neuron Synapse , 2000, The Journal of Neuroscience.

[57]  T. Freund,et al.  Total Number and Ratio of Excitatory and Inhibitory Synapses Converging onto Single Interneurons of Different Types in the CA1 Area of the Rat Hippocampus , 1999, The Journal of Neuroscience.

[58]  R. Dingledine,et al.  Long-term depression in hippocampal interneurons: joint requirement for pre- and postsynaptic events. , 1999, Science.

[59]  Ken Mackie,et al.  Presynaptically Located CB1 Cannabinoid Receptors Regulate GABA Release from Axon Terminals of Specific Hippocampal Interneurons , 1999, The Journal of Neuroscience.

[60]  R. Dingledine,et al.  The glutamate receptor ion channels. , 1999, Pharmacological reviews.

[61]  G. Buzsáki,et al.  Interneurons of the hippocampus , 1998, Hippocampus.

[62]  K. Tóth,et al.  Afferent-specific innervation of two distinct AMPA receptor subtypes on single hippocampal interneurons , 1998, Nature Neuroscience.

[63]  Arnd Roth,et al.  Submillisecond AMPA Receptor-Mediated Signaling at a Principal Neuron–Interneuron Synapse , 1997, Neuron.

[64]  R. Morris Foundations of cellular neurophysiology , 1996 .

[65]  T. Freund,et al.  Differences between Somatic and Dendritic Inhibition in the Hippocampus , 1996, Neuron.

[66]  P. Somogyi,et al.  Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons , 1995, Nature.

[67]  M A Rogawski,et al.  Intracellular polyamines mediate inward rectification of Ca(2+)-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[68]  M. Mayer,et al.  Inward rectification of both AMPA and kainate subtype glutamate receptors generated by polyamine-mediated ion channel block , 1995, Neuron.

[69]  B. Sakmann,et al.  Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS , 1995, Neuron.

[70]  R. Traub,et al.  Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation , 1995, Nature.

[71]  G. Buzsáki,et al.  Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[72]  Peter Somogyi,et al.  Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites , 1994, Nature.

[73]  J J Jack,et al.  Dendritic morphology of pyramidal neurones of the visual cortex of the rat. IV: Electrical geometry , 1992, The Journal of comparative neurology.

[74]  István Ulbert,et al.  Supplementary material to : Parvalbumin-containing fast-spiking basket cells generate the field potential oscillations induced by cholinergic receptor activation in the hippocampus , 2010 .

[75]  P. Jonas,et al.  A small number of open Ca2+ channels trigger transmitter release at a central GABAergic synapse , 2010, Nature Neuroscience.

[76]  T. Freund,et al.  Perisomatic Inhibition , 2007, Neuron.

[77]  P. Jonas,et al.  Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks , 2007, Nature Reviews Neuroscience.

[78]  G. Collingridge,et al.  Excitatory amino acids in synaptic transmission in the Schaffer collateral‐commissural pathway of the rat hippocampus. , 1983, The Journal of physiology.