A theoretical study of resonant cavity‐enhanced photodectectors with Ge and Si active regions

An integration of Ge or Si with compound semiconductors is considered for optical detectors at wavelengths ranging from the visible to 1.55 μm. Both Ge and Si are indirect band gap materials with relatively small absorption coefficients but very long carrier lifetimes. Using a resonant cavity formed by large band gap compound semiconductor mirrors surrounding Ge and Si active layers, high photosensitivity for thin (<0.5 μm) absorbing layers can be achieved. Two different methods are discussed and compared for the calculation of the photosensitivity of resonant cavity enhanced detectors. The standing wave effect and its dependence on cavity parameters are analyzed. Design rules for such resonant cavity enhanced photodetectors are presented. The spectral response of some device designs to achieve high quantum efficiency and wavelength selectivity has also been theoretically investigated.

[1]  K. Horio,et al.  Numerical analysis of GaAs MESFETS with p-buffer layer on semi-insulating substrate including deep traps , 1989 .

[2]  H. Haus Waves and fields in optoelectronics , 1983 .

[3]  K. Nakano,et al.  III-V alloy heterostructure high speed avalanche photodiodes , 1979 .

[4]  H. Morkoç,et al.  GaAs/Ge/GaAs heterostructures by molecular beam epitaxy , 1990 .

[5]  H. Nakagome,et al.  Characteristics in InGaAs/InP avalanche photodiodes with separated absorption and multiplication regions , 1981, IEEE Journal of Quantum Electronics.

[6]  T. Pearsall,et al.  Ga 0.47 In 0.53 As: A ternary semiconductor for photodetector applications , 1980 .

[7]  C. A. Burrus,et al.  InGaAs/InP p-i-n photodiodes for lightwave communications at the 0.95-1.65 µm wavelength , 1981 .

[8]  S. Chu,et al.  Origin and improvement of interface roughness in AlGaAs/GaAs heterostructures grown by molecular beam epitaxy , 1990 .

[9]  J. Chyi,et al.  Wavelength demultiplexing heterojunction phototransistor , 1990 .

[10]  C. Bethea,et al.  New graded band‐gap picosecond phototransistor , 1983 .

[11]  K. Uchida,et al.  Quality improvement of metalorganic chemical vapor deposition grown GaP on Si by AsH3 preflow , 1988 .

[12]  Transparent conductive metal‐oxide contacts in vertical‐injection top‐emitting quantum well lasers , 1991 .

[13]  D. Cheng Field and wave electromagnetics , 1983 .

[14]  H. Morkoç,et al.  Pnp GaAs/Ge/Ge phototransistor grown by molecular beam epitaxy: Implications for bipolar and hot‐electron transistors , 1986 .

[15]  J. Chyi,et al.  Resonant cavity-enhanced (RCE) photodetectors , 1991 .

[16]  L. Coldren,et al.  Design of Fabry-Perot surface-emitting lasers with a periodic gain structure , 1989 .

[17]  J. Chyi,et al.  Resonant cavity enhanced AlGaAs/GaAs heterojunction phototransistors with an intermediate InGaAs layer in the collector , 1990 .

[18]  C. A. Burrus,et al.  InP/InGaAs heterojunction phototransistors , 1981 .

[19]  Robert E. McMurray,et al.  Design parameters of a resonant infrared photoconductor with unity quantum efficiency , 1991 .

[20]  D. Lynch,et al.  Optical properties of metals. , 1981, Applied optics.

[21]  D. Law Semiconductors and semimetals, vol. 22, Lightwave Communication Technology, Part D - Photodetectors , 1986, IEEE Journal of Quantum Electronics.

[22]  K. Nosu,et al.  Review and status of wavelength-division-multiplexing technology and its application , 1984 .

[23]  O. Madelung Physics of Group IV Elements and III-V Compounds , 1982 .

[24]  G. Qua,et al.  InP/In0.53Ga0.47As heterojunction phototransistors grown by chemical beam epitaxy , 1987, IEEE Electron Device Letters.

[25]  Albert Chin,et al.  Multilayer reflectors by molecular‐beam epitaxy for resonance enhanced absorption in thin high‐speed detectors , 1990 .

[26]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .