Bootstrap adaptive estimation: The trimmed-mean example

We consider the problem of choosing among a class of possible estimators by selecting the estimator with the smallest bootstrap estimate of finite sample variance. This is an alternative to using cross-validation to choose an estimator adaptively. The problem of a confidence interval based on such an adaptive estimator is considered. We illustrate the ideas by applying the method to the problem of choosing the trimming proportion of an adaptive trimmed mean. It is shown that a bootstrap adaptive trimmed mean is asymptotically normal with an asymptotic variance equal to the smallest among trimmed means. The asymptotic coverage probability of a bootstrap confidence interval based on such adaptive estimators is shown to have the nominal level. The intervals based on the asymptotic normality of the estimator share the same asymptotic result, but have poor small-sample properties compared to the bootstrap intervals. A small-sample simulation demonstrates that bootstrap adaptive trimmed means adapt themselves rather well even for samples of size 10. Nous etudions le probleme du choix d'un estimateur parmi une classe en selectionnant celui qui a la plus petite estimation bootstrap de la variance d'echantillon fini. Ceci est une alternative a l'utilisation de la validation croisee pour un choix adaptatif d'estimateur. On considere le probleme de la construction d'intervalles de confiance pour de tels estimateurs adaptables. Les idees sont illustrees en appliquant la methode au probleme du choix de la proportion de troncature d'une moyenne tronquee adaptative. Il est demontre qu'une moyenne tronquee adaptative bootstrap est asymptotiquement normale avec une variance asymptotique egale a la plus petite parmi celles des moyennes tronquees. La probabilite de couverture asymptotique d'un intervalle de confiance bootstrap base sur de tels estimateurs adaptables est egale a la probabilite prescrite. Les intervalles bases sur la normalite asymptotique ont la meme propriete, mais ils ont une bien plus faible performance que les intervalles bootstrap dans le cas de petits echantillons. Les resultats d'une simulation demontrent que les moyennes tronquees adaptatives bootstrap s'adaptent tres bien, meme pour des echantillons de taille 10.

[1]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[2]  Louis A. Jaeckel Some Flexible Estimates of Location , 1971 .

[3]  John W. Tukey Study of Robustness by Simulation: Particularly Improvement by Adjustment and Combination , 1979 .

[4]  B. Efron Bootstrap Methods: Another Look at the Jackknife , 1979 .

[5]  D. M. Titterington,et al.  Cross-validation in nonparametric estimation of probabilities and probability densities , 1984 .

[6]  J. Kiefer,et al.  Asymptotic Minimax Character of the Sample Distribution Function and of the Classical Multinomial Estimator , 1956 .

[7]  Frederick Mosteller,et al.  Understanding robust and exploratory data analysis , 1983 .

[8]  P. Bickel,et al.  On Some Analogues to Linear Combinations of Order Statistics in the Linear Model , 1973 .

[9]  George Marsaglia,et al.  A Fast, Easily Implemented Method for Sampling from Decreasing or Symmetric Unimodal Density Functions , 1984 .

[10]  R. Serfling Approximation Theorems of Mathematical Statistics , 1980 .

[11]  Dennis D. Boos,et al.  A Differential for $L$-Statistics , 1979 .

[12]  A monte carlo comparison of regression trimmed means , 1985 .

[13]  M. Stone Asymptotics for and against cross-validation , 1977 .

[14]  A. Bowman An alternative method of cross-validation for the smoothing of density estimates , 1984 .

[15]  P. Hall Theoretical Comparison of Bootstrap Confidence Intervals , 1988 .

[16]  S. Bjerve,et al.  Error Bounds for Linear Combinations of Order Statistics , 1977 .

[17]  Joseph P. Romano,et al.  Bootstrap choice of tuning parameters , 1990 .

[18]  M. Rudemo Empirical Choice of Histograms and Kernel Density Estimators , 1982 .

[19]  Robert Tibshirani Bootstrap Confidence Intervals , 1984 .

[20]  B. Efron,et al.  The Jackknife: The Bootstrap and Other Resampling Plans. , 1983 .

[21]  D. Pollard Convergence of stochastic processes , 1984 .

[22]  J. Wellner,et al.  Empirical Processes with Applications to Statistics , 2009 .

[23]  Alan H. Welsh,et al.  The Trimmed Mean in the Linear Model , 1987 .

[24]  I. Johnstone,et al.  Efficient Scores, Variance Decompositions, and Monte Carlo Swindles , 1985 .

[25]  D. F. Andrews,et al.  Robust Estimates of Location: Survey and Advances. , 1975 .

[26]  Joseph P. Romano,et al.  Nonparametric confidence limits by resampling methods and least favorable families , 1990 .

[27]  S. Stigler The Asymptotic Distribution of the Trimmed Mean , 1973 .

[28]  D. Ruppert,et al.  Trimmed Least Squares Estimation in the Linear Model , 1980 .

[29]  Thomas J. DiCiccio,et al.  The automatic percentile method: Accurate confidence limits in parametric models , 1989 .

[30]  B. Efron Better Bootstrap Confidence Intervals , 1987 .