Second order symmetric duality for nonlinear multiobjective mixed integer programming

We formulate two pairs of second order symmetric duality for nonlinear multiobjective mixed integer programs for arbitrary cones. By using the concepts of efficiency and second order invexity, we establish weak, strong, converse and self-duality theorems for the dual models. Several known results are obtained as special cases.

[1]  Santanu K. Mishra,et al.  Second order symmetric duality in mathematical programming with F-convexity , 2000, Eur. J. Oper. Res..

[2]  Egon Balas,et al.  MINIMAX AND DUALITY FOR LINEAR AND NONLINEAR MIXED-INTEGER PROGRAMMING , 1969 .

[3]  G. Dantzig,et al.  Symmetric dual nonlinear programs. , 1965 .

[4]  Mokhtar S. Bazaraa,et al.  On Symmetric Duality in Nonlinear Programming , 1973, Oper. Res..

[5]  Kanwar Sen,et al.  Recent Developments in Operational Research , 2001 .

[6]  Sudarsan Nanda,et al.  On a pair of nonlinear mixed integer programming problems , 1985 .

[7]  B. V. Shah,et al.  Integer and Nonlinear Programming , 1971 .

[8]  B. Mond,et al.  A symmetric dual theorem for non-linear programs , 1965 .

[9]  Do Sang Kim,et al.  Multiobjective symmetric duality with cone constraints , 1998, Eur. J. Oper. Res..

[10]  Santanu K. Mishra,et al.  Multiobjective second order symmetric duality with cone constraints , 2000, Eur. J. Oper. Res..

[11]  Do Sang Kim,et al.  Symmetric duality with pseudo-invexity in variational problems * Research supported in part by KOSEF Research Grant 91-08-00-03 $ef: , 1993 .

[12]  G. Devi,et al.  Symmetric duality for nonlinear programming problem involving η-bonvex functions , 1998 .

[13]  Santosh Kumar,et al.  Recent Developments in Mathematical Programming , 1991 .

[14]  Do Sang Kim,et al.  Minimax and symmetric duality for nonlinear multiobjective mixed integer programming , 2001, Eur. J. Oper. Res..

[15]  Sudarsan Nanda,et al.  Pseudo-invexity and duality in nonlinear programming , 1996 .