Progressive Bayes: a new framework for nonlinear state estimation
暂无分享,去创建一个
[1] Geoffrey E. Hinton,et al. SMEM Algorithm for Mixture Models , 1998, Neural Computation.
[2] Radford M. Neal. Annealed importance sampling , 1998, Stat. Comput..
[3] Naonori Ueda,et al. Deterministic annealing EM algorithm , 1998, Neural Networks.
[4] Katarina Bartkova,et al. Parameter tying for flexible speech recognition , 1996, Proceeding of Fourth International Conference on Spoken Language Processing. ICSLP '96.
[5] Fredrik Gustafsson,et al. Terrain navigation using Bayesian statistics , 1999 .
[6] H. Sorenson,et al. Nonlinear Bayesian estimation using Gaussian sum approximations , 1972 .
[7] Hermann Ney,et al. A combined maximum mutual information and maximum likelihood approach for mixture density splitting , 1999, EUROSPEECH.
[8] Neil J. Gordon,et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..
[9] Ross D. Shachter,et al. Mixtures of Gaussians and Minimum Relative Entropy Techniques for Modeling Continuous Uncertainties , 1993, UAI.
[10] Christian Musso,et al. Improving Regularised Particle Filters , 2001, Sequential Monte Carlo Methods in Practice.
[11] Nikos A. Vlassis,et al. A Greedy EM Algorithm for Gaussian Mixture Learning , 2002, Neural Processing Letters.
[12] Neil J. Gordon,et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..
[13] Fred C. Schweppe,et al. Uncertain dynamic systems , 1973 .