Model reduction of parabolic PDEs using multivariate splines

ABSTRACT A new methodology is presented for model reduction of linear parabolic partial differential equations (PDEs) on general geometries using multivariate splines on triangulations. State-space descriptions are derived that can be used for control design. This method uses Galerkin projection with B-splines to derive a finite set of ordinary differential equations (ODEs). Any desired smoothness conditions between elements as well as the boundary conditions are flexibly imposed as a system of side constraints on the set of ODEs. Projection of the set of ODEs on the null space of the system of side constraints naturally produces a reduced-order model that satisfies these constraints. This method can be applied for both in-domain control and boundary control of parabolic PDEs with spatially varying coefficients on general geometries. The reduction method is applied to design and implement feedback controllers for stabilisation of a 1-D unstable heat equation and a more challenging 2-D reaction–convection–diffusion equation on an irregular domain. It is shown that effective feedback stabilisation can be achieved using low-order control models.

[1]  Ming-Jun Lai,et al.  Trivariate spline approximations of 3D Navier-Stokes equations , 2004, Math. Comput..

[2]  Gregory Hagen,et al.  Distributed control design for parabolic evolution equations: application to compressor stall control , 2004, IEEE Transactions on Automatic Control.

[3]  Panagiotis D. Christofides,et al.  Robust output feedback control of quasi-linear parabolic PDE systems , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[4]  Hans Zwart,et al.  An Introduction to Infinite-Dimensional Linear Systems Theory , 1995, Texts in Applied Mathematics.

[5]  P. Christofides,et al.  Dynamic optimization of dissipative PDE systems using nonlinear order reduction , 2002 .

[6]  Danfu Han,et al.  Bivariate Splines of Various Degrees for Numerical Solution of Partial Differential Equations , 2007, SIAM J. Sci. Comput..

[7]  Yury Orlov,et al.  Boundary control of coupled reaction-diffusion processes with constant parameters , 2015, Autom..

[8]  C. D. Boor,et al.  B-Form Basics. , 1986 .

[9]  P. Christofides,et al.  Finite-dimensional approximation and control of non-linear parabolic PDE systems , 2000 .

[10]  Chenkun Qi,et al.  Modeling of distributed parameter systems for applications—A synthesized review from time–space separation , 2010 .

[11]  Patrick Knupp,et al.  Code Verification by the Method of Manufactured Solutions , 2000 .

[12]  M. Balas FEEDBACK CONTROL OF LINEAR DIFFUSION PROCESSES , 1979 .

[13]  Larry L. Schumaker,et al.  Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.

[14]  P. Daoutidis,et al.  Finite-dimensional control of parabolic PDE systems using approximate inertial manifolds , 1997 .

[15]  M. Balas The galerkin method and feedback control of linear distributed parameter systems , 1983 .

[16]  Roberto Triggiani,et al.  Control Theory of Partial Differential Equations , 2005 .

[17]  J. A. Mulder,et al.  Differential constraints for bounded recursive identification with multivariate splines , 2011, Autom..

[18]  M. Krstić,et al.  Backstepping observers for a class of parabolic PDEs , 2005, Syst. Control. Lett..

[19]  Fernando Paganini,et al.  Distributed control of spatially invariant systems , 2002, IEEE Trans. Autom. Control..

[20]  Dennis S. Bernstein,et al.  A matrix nullspace approach for solving equality-constrained multivariable polynomial least-squares problems , 2014, Autom..

[21]  Antonios Armaou,et al.  Finite-dimensional control of nonlinear parabolic PDE systems with time-dependent spatial domains using empirical eigenfunctions , 2001 .

[22]  Mihailo R. Jovanovic,et al.  A formula for frequency responses of distributed systems with one spatial variable , 2006, Syst. Control. Lett..

[23]  Clarence W. Rowley,et al.  Model Reduction for fluids, Using Balanced Proper Orthogonal Decomposition , 2005, Int. J. Bifurc. Chaos.

[24]  Gerald Farin,et al.  Triangular Bernstein-Bézier patches , 1986, Comput. Aided Geom. Des..

[25]  Kalmanje Krishnakumar,et al.  A sparse collocation method for solving time-dependent HJB equations using multivariate B-splines , 2014, Autom..

[26]  Antonios Armaou,et al.  Robust control of parabolic PDE systems with time-dependent spatial domains , 2001, Autom..

[27]  Miroslav Krstic,et al.  Closed-form boundary State feedbacks for a class of 1-D partial integro-differential equations , 2004, IEEE Transactions on Automatic Control.

[28]  Miroslav Krstic,et al.  Control of Turbulent and Magnetohydrodynamic Channel Flows: Boundary Stabilization and State Estimation , 2007 .

[29]  Ming-Jun Lai,et al.  Bivariate splines for fluid flows , 2004 .

[30]  Ming-Jun Lai,et al.  The Multivariate Spline Method for Scattered Data Fitting and Numerical Solutions of Partial Differential Equations , 2006 .

[31]  Miroslav Krstic,et al.  A Closed-Form Feedback Controller for Stabilization of the Linearized 2-D Navier–Stokes Poiseuille System , 2007, IEEE Transactions on Automatic Control.

[32]  R. Triggiani,et al.  Control Theory for Partial Differential Equations: Continuous and Approximation Theories , 2000 .

[33]  Mark J. Balas,et al.  Stability of distributed parameter systems with finite-dimensional controller-compensators using singular perturbations , 1984 .

[34]  K. Chung,et al.  On Lattices Admitting Unique Lagrange Interpolations , 1977 .

[35]  P. Christofides,et al.  Nonlinear and Robust Control of PDE Systems: Methods and Applications to Transport-Reaction Processes , 2002 .

[36]  J. A. Mulder,et al.  A new approach to linear regression with multivariate splines , 2009, Autom..

[37]  L. L. Schumaker,et al.  Bounds on Projections onto Bivariate Polynomial Spline Spaces with Stable Local Bases , 2002 .

[38]  Larry L. Schumaker,et al.  On the approximation power of bivariate splines , 1998, Adv. Comput. Math..