Well-conditioned configurations of fault-tolerant manipulators

Fault-tolerant motion of redundant manipulators can be obtained by joint velocity reconfiguration. For fault-tolerant manipulators, it is beneficial to determine the configurations that can tolerate the locked-joint failures with a minimum relative joint velocity jump, because the manipulator can rapidly reconfigure itself to tolerate the fault. This paper uses the properties of the condition numbers to introduce those optimal configurations for serial manipulators. The relationship between the manipulator's locked-joint failures and the condition number of the Jacobian matrix is indicated by using a matrix perturbation methodology. Then, it is observed that the condition number provides an upper bound of the required relative joint velocity change for recovering the faults which leads to define the optimal fault-tolerant configuration from the minimization of the condition number. The optimization problem to obtain the minimum condition number is converted to three standard Eigen value optimization problems. A solution is for selected optimization problem is presented. Finally, in order to obtain the optimal fault-tolerant configuration, the proposed method is applied to a 4-DoF planar manipulator.

[1]  Ian D. Walker,et al.  Fault identification for robot manipulators , 2005, IEEE Transactions on Robotics.

[2]  Anthony A. Maciejewski,et al.  A local measure of fault tolerance for kinematically redundant manipulators , 1996, IEEE Trans. Robotics Autom..

[3]  Anthony A. Maciejewski,et al.  Optimal mapping of joint faults into healthy joint velocity space for fault-tolerant redundant manipulators , 2011, Robotica.

[4]  Leila Notash Joint sensor fault detection for fault tolerant parallel manipulators , 2000, J. Field Robotics.

[5]  Christiaan J. J. Paredis,et al.  Designing Fault-Tolerant Manipulators: How Many Degrees of Freedom? , 1996, Int. J. Robotics Res..

[6]  Farhad Aghili,et al.  Fault Diagnosis in Robotic Manipulators using Joint Torque Sensing , 2008 .

[7]  Christiaan J. J. Paredis,et al.  Global trajectory planning for fault tolerant manipulators , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[8]  Anthony A. Maciejewski,et al.  A path planning strategy for kinematically redundant manipulators anticipating joint failures in the presence of obstacles , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[9]  K. Y. Tsai,et al.  The design of isotropic 6-DOF parallel manipulators using isotropy generators , 2003 .

[10]  Zhao Jing,et al.  On the joint velocity jump during fault tolerant operations for manipulators with multiple degrees of redundancy , 2009 .

[11]  K. Y. Tsai,et al.  The design of redundant isotropic manipulators with special link parameters , 2005, Robotica.

[12]  Rodney G. Roberts,et al.  On the limitations of designing equally fault-tolerant configurations for kinematically redundant manipulators , 2009, 2010 42nd Southeastern Symposium on System Theory (SSST).

[13]  Saeid Nahavandi,et al.  Optimal actuator fault tolerance for static nonlinear systems based on minimum output velocity jump , 2010, The 2010 IEEE International Conference on Information and Automation.

[14]  Li Huang,et al.  On the design of fault tolerant parallel manipulators , 2003 .

[15]  Saeid Nahavandi,et al.  Joint velocity redistribution for fault tolerant manipulators , 2010, 2010 IEEE Conference on Robotics, Automation and Mechatronics.

[16]  Anthony A. Maciejewski,et al.  Failure tolerant teleoperation of a kinematically redundant manipulator: an experimental study , 2003, IEEE Trans. Syst. Man Cybern. Part A.

[17]  J. Angeles The Design of Isotropic Manipulator Architectures in the Presence of Redundancies , 1992 .

[18]  Saeid Nahavandi,et al.  A class of optimal fault tolerant Jacobian for minimal redundant manipulators based on symmetric geometries , 2011, 2011 IEEE International Conference on Systems, Man, and Cybernetics.

[19]  Charles A. Klein,et al.  Dexterity Measures for the Design and Control of Kinematically Redundant Manipulators , 1987 .

[20]  Saeid Nahavandi,et al.  Designing optimal fault tolerant Jacobian for robotic manipulators , 2010, 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[21]  Anthony A. Maciejewski,et al.  Optimal fault-tolerant Jacobian matrix generators for redundant manipulators , 2011, 2011 IEEE International Conference on Robotics and Automation.

[22]  A. A. Maciejewski,et al.  Dexterity optimization of kinematically redundant manipulators in the presence of joint failures , 1994 .

[23]  Pradeep K. Khosla,et al.  Dexterity measures for design and control of manipulators , 1991, Proceedings IROS '91:IEEE/RSJ International Workshop on Intelligent Robots and Systems '91.

[24]  Li Qian,et al.  An analytical algorithm with minimum joint velocity jump for redundant robots in the presence of locked-joint failures , 2008, 2008 IEEE International Conference on Robotics and Automation.

[25]  Anthony A. Maciejewski,et al.  An example of failure tolerant operation of a kinematically redundant manipulator , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[26]  Anthony A. Maciejewski,et al.  Fundamental Limitations on Designing Optimally Fault-Tolerant Redundant Manipulators , 2008, IEEE Transactions on Robotics.

[27]  Peter I. Corke,et al.  A robotics toolbox for MATLAB , 1996, IEEE Robotics Autom. Mag..

[28]  Joseph R. Cavallaro,et al.  Failure mode analysis for a hazardous waste clean-up manipulator , 1996 .

[29]  Rodney G. Roberts The dexterity and singularities of an underactuated robot , 2001, J. Field Robotics.

[30]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[31]  Anthony A. Maciejewski,et al.  Characterizing optimally fault-tolerant manipulators based on relative manipulability indices , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[32]  Anthony A. Maciejewski,et al.  Fault tolerant operation of kinematically redundant manipulators for locked joint failures , 1997, IEEE Trans. Robotics Autom..

[33]  Rodney G. Roberts Quantifying the local fault tolerance of a kinematically redundant manipulator , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[34]  A. Ghosal,et al.  An algebraic formulation of kinematic isotropy and design of isotropic 6-6 Stewart platform manipulators , 2008 .

[35]  Yixin Chen,et al.  Optimal, fault-tolerant mappings to achieve secondary goals without compromising primary performance , 2003, IEEE Trans. Robotics Autom..

[36]  Leila Notash,et al.  Design modification of parallel manipulators for optimum fault tolerance to joint jam , 2005 .

[37]  Saeid Nahavandi,et al.  Minimum Reconfiguration for Fault Tolerant Manipulators , 2010 .

[38]  Anthony A. Maciejewski,et al.  On the existence of an optimally failure tolerant 7R manipulator Jacobian , 2007 .

[39]  J. Alberto Bandoni,et al.  Eigenvalue And Singular Value Optimization , 2003 .

[40]  Saeid Nahavandi,et al.  Task completion with partially-failed manipulators , 2010, 2010 IEEE Conference on Robotics, Automation and Mechatronics.

[41]  Rodney G. Roberts,et al.  Designing equally fault-tolerant configurations for kinematically redundant manipulators , 2009 .

[42]  Jing Zhao,et al.  Study on fault tolerant workspace and fault tolerant planning algorithm based on optimal initial position for two spatial coordinating manipulators , 2006 .