Formulation and application of a short-term strength criterion for isotropic rocks

This paper deals with failure of low-porosity rocks and with a multiaxial representation of the corresponding surface in stress space. The proposed failure criterion is based on a mathematical modification of the MSDP function recently developed by the same group. This three-dimensional criterion has been reformulated so that it can be expressed in a unified manner, without having to resort to a transition condition between the curved portion (referred to as the Mises-Schleicher portion) and the linear portion (referred to as the Drucker-Prager portion). The new failure surface has the following characteristics: a forced passage through the uniaxial strength in tension ( σt) and in compression (σc ), a continuous influence of the minor principal stress for the entire range of behavior considered, a strength under high confining stress that is controlled by the basic friction angle φb, and a loading-geometry effect expressed in the π plane. This new expression of the criterion is presented in the paper. Its main characteristics are also shown, together with its application to various low-porosity rocks using a number of testing results taken from the literature. In the discussion that follows, other attributes of the criterion are highlighted using a qualitative comparison with the Hoek-Brown criterion.

[1]  D. W. Hobbs,et al.  A study of the behaviour of a broken rock under triaxial compression, and its application to mine roadways , 1966 .

[2]  M. Paterson Experimental Rock Deformation: The Brittle Field , 1978 .

[3]  Z. Bieniawski Estimating the strength of rock materials : 7F, 5T, 18R. J.S. AFRICAN INST. MIN. METALL. V74, N8, MAR. 1974, P312–320 , 1974 .

[4]  Kiyoo Mogi,et al.  Pressure Dependence of Rock Strength and Transition from Brittle Fracture to Ductile Flow. , 1966 .

[5]  Chandrakant S. Desai,et al.  Constitutive Model for Rocks , 1987 .

[6]  B. Ladanyi,et al.  Simulation Of Shear Behavior Of A Jointed Rock Mass , 1969 .

[7]  P. Theocaris Failure criteria for isotropic bodies revisited , 1995 .

[8]  Kiyoo Mogi,et al.  Effect of the triaxial stress system on the failure of dolomite and limestone , 1971 .

[9]  W. S. Brown,et al.  An observation of loading path independence of fracture in rock , 1971 .

[10]  P. J. F. Wright,et al.  Comments on an indirect tensile test on concrete cylinders , 1955 .

[11]  R. Carmichael CRC handbook of physical properties of rocks , 1982 .

[12]  Paul Tapponnier,et al.  Development of stress-induced microcracks in Westerly Granite , 1976 .

[13]  J. Byerlee Brittle-ductile transition in rocks , 1968 .

[14]  Michel Aubertin,et al.  Stability Analyses of Underground Openings Using a Multiaxial Failure Criterion , 1999 .

[15]  D. J. Barber,et al.  Deformation Processes in Minerals, Ceramics and Rocks , 1990 .

[16]  C. Martin,et al.  The strength of massive Lac du Bonnet granite around underground openings , 1993 .

[17]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .

[18]  V. Hucka,et al.  Brittleness determination of rocks by different methods , 1974 .

[19]  S. D. Hallam,et al.  The failure of brittle solids containing small cracks under compressive stress states , 1986 .

[20]  Z. Bieniawski Estimating the strength of rock materials , 1974 .

[21]  M. U. Ozbay,et al.  A study of the behaviour of brittle rocks under plane strain and triaxial loading conditions , 1995 .

[22]  Kalman Kovári The elasto-plastic analysis in the design practice of underground openings , 1977 .

[23]  P. Meredith Fracture and failure of brittle polycrystals: an overview , 1990 .

[24]  John A. Hudson,et al.  A Simplified Three Dimensional Hoek-Brown Yield Criterion , 1988 .

[25]  Ferdinando Stassi-D'Alia,et al.  Flow and fracture of materials according to a new limiting condition of yelding , 1967 .

[26]  John M Kemeny,et al.  Micromechanics of Deformation in Rocks , 1991 .

[27]  N. Cristescu,et al.  Time effects in rock mechanics , 1998 .

[28]  William G. Pariseau On the significance of dimensionless failure criteria , 1994 .

[29]  Arcady Dyskin,et al.  Mechanisms of brittle fracture of rock with pre-existing cracks in compression , 1994 .

[30]  Wai-Fah Chen,et al.  Plasticity for Structural Engineers , 1988 .

[31]  J. C. Jaeger Failure of rocks under tensile conditions , 1967 .

[32]  R. Goodman Introduction to Rock Mechanics , 1980 .

[33]  J. C. Jaeger,et al.  Fundamentals of rock mechanics , 1969 .

[34]  Poul V. Lade,et al.  Three-Parameter Failure Criterion for Concrete , 1982 .

[35]  G. E. Andreev Brittle failure of rock materials : test results and constitutive models , 1995 .

[36]  F. Patton Multiple Modes of Shear Failure In Rock , 1966 .

[37]  Peter Sammonds,et al.  Cracking, Damage and Fracture in Stressed Rock: A Holistic Approach , 1991 .

[38]  E. T. Brown,et al.  EMPIRICAL STRENGTH CRITERION FOR ROCK MASSES , 1980 .

[39]  Chunlin Li,et al.  Deformation of brittle rocks under compression - with particular reference to microcracks , 1993 .

[40]  B. Atkinson Fracture Mechanics of Rock , 1987 .

[41]  B. J. Carter,et al.  Fitting strength criteria to intact rock , 1991 .

[42]  P. R. Sheorey Empirical Rock Failure Criteria , 1997 .

[43]  Michel Aubertin,et al.  A multiaxial stress criterion for short- and long-term strength of isotropic rock media , 2000 .

[44]  U. Hunsche,et al.  Uniaxial and Triaxial Creep and Failure Tests on Rock: Experimental Technique and Interpretation , 1994 .

[45]  K. K. Lee,et al.  Mechanisms of brittle fracture of rock with multiple pre-existing cracks in compression , 1994 .

[46]  Bezalel C. Haimson,et al.  Polyaxial strength criteria and their use in estimating in situ stress magnitudes from borehole breakout dimensions , 1997 .

[47]  Bernard Amadei,et al.  Strength Of Rock In Multiaxial Loading Conditions , 1986 .

[48]  N. Barton,et al.  The shear strength of rock joints in theory and practice , 1977 .

[49]  J. Gramberg,et al.  A non-conventional view on rock mechanics and fracture mechanics , 1988 .

[50]  Chandrakant S. Desai,et al.  Constitutive laws for engineering materials, with emphasis on geologic materials , 1984 .

[51]  Michel Aubertin,et al.  Un critère de rupture multiaxial pour matériaux fragiles , 1998 .

[52]  I. W. Johnson Comparison of Two Strength Criteria for Intact Rock , 1985 .

[53]  H R Hardy,et al.  AN INVESTIGATION OF METHODS FOR THE DETERMINATION OF THE TENSILE STRENGTH OF ROCK , 1970 .

[54]  John M Kemeny,et al.  A new empirical failure criterion for rock under polyaxial compressive stresses , 1995 .

[55]  Leonard Obert,et al.  Rock mechanics and the design of structures in rock , 1967 .

[56]  Z. T. Bieniawski,et al.  Rock mechanics design in mining and tunneling , 1984 .

[57]  Poul V. Lade,et al.  Modelling rock strength in three dimensions , 1984 .

[58]  M. Gamache,et al.  Parameter determination for nonlinear stress criteria using a simple regression tool , 2000 .

[59]  Michel Aubertin,et al.  A damage initiation criterion for low porosity rocks , 1997 .

[60]  E. R. Hoskins The failure of thick-walled hollow cylinders of isotropic rock , 1969 .

[61]  N. A. Chandler,et al.  The progressive fracture of Lac du Bonnet granite , 1994 .

[62]  C. Martin,et al.  Seventeenth Canadian Geotechnical Colloquium: The effect of cohesion loss and stress path on brittle rock strength , 1997 .