A review of microstructural computer models used to simulate grain growth and recrystallisation in aluminium alloys

Abstract Microstructural computer models which explicitly model the topology and network connectivity of evolving grain and subgrain structures are reviewed. Simulations of grain growth, abnormal grain growth and recrystallisation and using various modelling techniques such as vertex models, Monte Carlo Potts models, phase field models, and cellular automata models are described. The advantages and disadvantages of each type of model are discussed along with multiscale approaches to link each type of model. The problems of modelling industrial alloys using these approaches are analysed, in particular focusing on the use of experimentally measured materials properties and incorporating experimental starting microstructures into the simulations. The difficulties of modelling nucleation and linking deformation models to annealing models are considered.

[1]  Dierk Raabe,et al.  Coupling of a crystal plasticity finite-element model with a probabilistic cellular automaton for simulating primary static recrystallization in aluminium , 2000 .

[2]  Z. Guo,et al.  Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization , 2001 .

[3]  Y. Bréchet,et al.  Zener pinning and grain growth : A two-dimensional vertex computer simulation , 1999 .

[4]  Kenneth A. Brakke,et al.  The motion of a surface by its mean curvature , 2015 .

[5]  G. Gottstein,et al.  Simulation of primary recrystallization using a modified three-dimensional cellular automaton , 1999 .

[6]  D. Kuhlmann-wilsdorf,et al.  Overview no. 96: Evolution of F.C.C. deformation structures in polyslip , 1992 .

[7]  D. Srolovitz,et al.  Molecular dynamics simulation of triple junction migration , 2002 .

[8]  Mats Hillert,et al.  Inhibition of grain growth by second-phase particles , 1988 .

[9]  C. Davies,et al.  The cellular automaton simulation of static recrystallization in cold-rolled AA1050 , 1999 .

[10]  Elizabeth A. Holm,et al.  A fast serial algorithm for the finite temperature quenched Potts model , 1993 .

[11]  S. Phillpot,et al.  Combined atomistic and mesoscale simulation of grain growth in nanocrystalline thin films , 2002 .

[12]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[13]  Mark Miodownik,et al.  Highly parallel computer simulations of particle pinning: zener vindicated , 2000 .

[14]  Daryl C. Chrzan,et al.  Scaling of microstructural parameters: Misorientations of deformation induced boundaries , 1996 .

[15]  D. Kinderlehrer,et al.  Extracting Grain Boundary and Surface Energy from Measurement of Triple Junction Geometry , 1999 .

[16]  C. Thompson,et al.  Computer simulation of strain energy effects vs surface and interface energy effects on grain growth in thin films , 1996 .

[17]  Andrew J. Haslam,et al.  Mesoscopic simulation of two-dimensional grain growth with anisotropic grain-boundary properties , 2002 .

[18]  Alfred Cerezo,et al.  Mesoscale simulations of particle pinning , 1999 .

[19]  Dierk Raabe,et al.  A hybrid model for mesoscopic simulation of recrystallization , 2001 .

[20]  W. Craig Carter,et al.  Modeling Grain Boundaries using a Phase Field Technique , 1998, cond-mat/9808319.

[21]  T. Baudin,et al.  Monte Carlo simulation of recrystallization in Fe–50%Ni starting from EBSD and bulk texture measurements , 2002 .

[22]  A. Rollett A New Representation of Grain Boundary Properties , 2002 .

[23]  D. Molodov,et al.  Grain Boundary Migration in Metals: Recent Developments , 1998 .

[24]  Long-Qing Chen,et al.  Computer simulation of 3-D grain growth using a phase-field model , 2002 .

[25]  A. Voter,et al.  Extending the Time Scale in Atomistic Simulation of Materials Annual Re-views in Materials Research , 2002 .

[26]  Dierk Raabe,et al.  Introduction of a scalable three-dimensional cellular automaton with a probabilistic switching rule for the discrete mesoscale simulation of recrystallization phenomena , 1999 .

[27]  M. Miodownik,et al.  Accumulation of coincidence site lattice boundaries during grain growth , 2003 .

[28]  G. Gottstein,et al.  On the mechanisms of grain boundary migration , 2002 .

[29]  B. R. Patton,et al.  Grain growth in systems with anisotropic boundary mobility: Analytical model and computer simulation , 2001 .

[30]  J. Lépinoux,et al.  Mechanisms and Kinetics of Recrystallisation: A Two Dimensional Vertex Dynamics Simulation , 2001 .

[31]  F. J. Humphreys A unified theory of recovery, recrystallization and grain growth, based on the stability and growth of cellular microstructures—I. The basic model , 1997 .

[32]  David J. Srolovitz,et al.  Computer simulation of grain growth—V. Abnormal grain growth , 1985 .

[33]  Q. Liu,et al.  Dislocation boundaries and active slip systems , 1995 .

[34]  D. Srolovitz,et al.  Misorientation dependence of intrinsic grain boundary mobility: simulation and experiment , 1999 .

[35]  M. Miodownik,et al.  On misorientation distribution evolution during anisotropic grain growth , 2001 .

[36]  A. Rollett,et al.  Measuring relative grain boundary energies and mobilities in an aluminum foil from triple junction geometry , 2001 .

[37]  Long-Qing Chen,et al.  Computer simulation of grain growth kinetics with solute drag , 1999 .

[38]  Elizabeth A. Holm,et al.  Comparison of phase-field and Potts models for coarsening processes , 1998 .

[39]  K. Janssens,et al.  Thermodynamic and Kinetic Coupling of a Random Grid Cellular Automaton for the Simulation of Grain Growth , 2002 .

[40]  D. A. Hughes,et al.  Scaling of the spacing of deformation induced dislocation boundaries , 2000 .

[41]  G. Gottstein,et al.  Triple junction drag and grain growth in 2D polycrystals , 2002 .

[42]  N. Hansen,et al.  Macroscopic and microscopic subdivison of a cold–rolled aluminium single crystal of cubic orientation , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[43]  T. DebRoy,et al.  Three dimensional Monte Carlo simulation of grain growth during GTA welding of titanium , 2000 .

[44]  F. J. Humphreys,et al.  Discontinuous subgrain growth in deformed and annealed {110} 〈001〉 aluminium single crystals , 1996 .

[45]  Dierk Raabe,et al.  Cellular Automata in Materials Science with Particular Reference to Recrystallization Simulation , 2002 .

[46]  Q. Liu,et al.  SCALING OF MISORIENTATION ANGLE DISTRIBUTIONS , 1998 .

[47]  Michael P. Anderson,et al.  Computer simulation of recrystallization in non-uniformly deformed metals , 1989 .

[48]  Long-Qing Chen,et al.  COMPUTER SIMULATION OF GRAIN GROWTH USING A CONTINUUM FIELD MODEL , 1997 .

[49]  Mark T. Lusk,et al.  A phase–field paradigm for grain growth and recrystallization , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[50]  Anthony D. Rollett,et al.  Computer simulation of recrystallization—III. Influence of a dispersion of fine particles , 1992 .

[51]  G. Gottstein,et al.  Stress induced grain boundary motion , 2001 .

[52]  V. Bulatov,et al.  Connecting atomistic and mesoscale simulations of crystal plasticity , 1998, Nature.

[53]  Daniel Weygand,et al.  A Vertex Simulation of Grain Growth in 2D and 3D , 2001 .

[54]  A. Kuprat,et al.  Linking Experimental Characterization and Computational Modeling of Grain Growth in Al-Foil , 2002 .

[55]  J. Szpunar,et al.  Modeling the effect of coincidence site lattice boundaries on grain growth textures. , 1995, Physical review. B, Condensed matter.

[56]  Michael P. Anderson,et al.  Simulation and theory of abnormal grain growth: anisotropic grain boundary energies and mobilities , 1989 .

[57]  P. A. Manohar,et al.  Five Decades of the Zener Equation , 1998 .

[58]  A. Rollett,et al.  Editorial: Microstructural Evolution Based on Fundamental Interfacial Properties , 2002 .

[59]  Elizabeth A. Holm,et al.  The computer simulation of microstructural evolution , 2001 .

[60]  M. Kobayashi,et al.  Prediction of Microstructural Evolution during Grain Growth of a Pure Aluminum by means of Monte Carlo Simulation , 2001 .

[61]  F. J. Humphreys,et al.  Subgrain growth and low angle boundary mobility in aluminium crystals of orientation {110}〈001〉 , 2000 .

[62]  C. S. Smith,et al.  Grains, Phases, and Interfaces an Interpretation of Microstructure , 1948 .

[63]  F. J. Humphreys,et al.  The annealing behaviour of deformed cube-oriented aluminium single crystals , 2000 .

[64]  Mark Miodownik,et al.  On boundary misorientation distribution functions and how to incorporate them into three-dimensional models of microstructural evolution , 1999 .

[65]  G. Gottstein,et al.  Modelling of recrystallization textures , 2001 .

[66]  A. Rollett,et al.  On the growth of abnormal grains , 1997 .