High energy neutrino emission and neutrino background from gamma-ray bursts in the internal shock model

High energy neutrino emission from gamma-ray bursts (GRBs) is discussed. In this paper, by using the simulation kit GEANT4, we calculate proton cooling efficiency including pion-multiplicity and proton-inelasticity in photomeson production. First, we estimate the maximum energy of accelerated protons in GRBs. Using the obtained results, neutrino flux from one burst and a diffuse neutrino background are evaluated quantitatively. We also take account of cooling processes of pion and muon, which are crucial for resulting neutrino spectra. We confirm the validity of analytic approximate treatments on GRB fiducial parameter sets, but also find that the effects of multiplicity and high-inelasticity can be important on both proton cooling and resulting spectra in some cases. Finally, assuming that the GRB rate traces the star formation rate, we obtain a diffuse neutrino background spectrum from GRBs for specific parameter sets. We introduce the nonthermal baryon-loading factor, rather than assume that GRBs are main sources of ultra-high energy cosmic rays (UHECRs). We find that the obtained neutrino background can be comparable with the prediction of Waxman and Bahcall, although our ground in estimation is different from theirs. In this paper, we study on various parameters since there are many parameters in the model. Themore » detection of high energy neutrinos from GRBs will be one of the strong evidences that protons are accelerated to very high energy in GRBs. Furthermore, the observations of a neutrino background has a possibility not only to test the internal shock model of GRBs but also to give us information about parameters in the model and whether GRBs are sources of UHECRs or not.« less

[1]  N. Langer,et al.  Which massive stars are gamma-ray burst progenitors? , 2005, astro-ph/0504175.

[2]  K. Ioka,et al.  TeV-PeV Neutrinos from Giant Flares of Magnetars and the Case of SGR 1806–20 , 2005, astro-ph/0503279.

[3]  K. Asano Cooling of Accelerated Nucleons and Neutrino Emission in Gamma-Ray Bursts , 2005, astro-ph/0503262.

[4]  T. Piran The physics of gamma-ray bursts , 2004, astro-ph/0405503.

[5]  T. Piran,et al.  The Luminosity and Angular Distributions of Long-Duration Gamma-Ray Bursts , 2003, astro-ph/0311488.

[6]  S. Ando,et al.  Relic neutrino background from cosmological supernovae , 2004, astro-ph/0410061.

[7]  P. Mazzali,et al.  Hypernovae : Their Properties and Gamma-Ray Burst Connection(Session 9 : Gamma-Ray Bursts : Afterglows and Acceleration) , 2004 .

[8]  Bing Zhang,et al.  Gamma-Ray Bursts: Progress, Problems & Prospects , 2003, astro-ph/0311321.

[9]  C. Dermer,et al.  High-energy cosmic rays from ?-ray bursts , 2003, astro-ph/0310667.

[10]  P. O. Hulth,et al.  Search for extraterrestrial point sources of neutrinos with AMANDA-II. , 2003, Physical review letters.

[11]  E. Waxman,et al.  Neutrino signatures of the supernova - gamma-ray burst relationship , 2003, astro-ph/0308239.

[12]  E. al.,et al.  Sensitivity of the IceCube detector to astrophysical sources of high energy muon neutrinos , 2003, astro-ph/0305196.

[13]  D. Hooper,et al.  Neutrinos from individual gamma-ray bursts in the BATSE catalog , 2003, astro-ph/0302524.

[14]  G. E. Romero,et al.  Cosmic gamma-ray sources , 2004 .

[15]  S. Schadmand Photon-induced reactions , 2003 .

[16]  K. Glazebrook,et al.  Constraints on a Universal Stellar Initial Mass Function from Ultraviolet to Near-Infrared Galaxy Luminosity Densities , 2003 .

[17]  K. Glazebrook,et al.  Constraints on a Universal IMF from UV to Near-IR Galaxy Luminosity Densities , 2003, astro-ph/0304423.

[18]  K. Asano,et al.  Photon Emission in a Cascade from Relativistic Protons Initiated by Residual Thermal Photons in Gamma-Ray Bursts , 2003, astro-ph/0303195.

[19]  D. Frail,et al.  Gamma-Ray Burst Energetics and the Gamma-Ray Burst Hubble Diagram: Promises and Limitations , 2003, astro-ph/0302210.

[20]  C. Dermer,et al.  High-energy neutrinos from gamma ray bursts. , 2003, Physical review letters.

[21]  S. Ando,et al.  Gamma-ray burst neutrino background and star formation history in the universe , 2002, astro-ph/0203481.

[22]  M. Kossov Approximation of photonuclear interaction cross-sections , 2002 .

[23]  T. Piran,et al.  Time-scales in long gamma-ray bursts , 2002 .

[24]  M. Pohl,et al.  Neutrinos from active galactic nuclei as a diagnostic tool , 2001, astro-ph/0111545.

[25]  Felix Ryde,et al.  Luminosity and Variability of Collimated Gamma-Ray Bursts , 2001, astro-ph/0110080.

[26]  J. Granot,et al.  Gamma-Ray Burst Afterglows in Pulsar-Wind Bubbles , 2001, astro-ph/0112087.

[27]  Michael L. Norman,et al.  The Formation of the First Star in the Universe , 2001, Science.

[28]  Ehud NakarTsvi Piran Time Scales in Long GRBs , 2001, astro-ph/0103210.

[29]  S. Djorgovski,et al.  Beaming in Gamma-Ray Bursts: Evidence for a Standard Energy Reservoir , 2001, astro-ph/0102282.

[30]  Maarten Schmidt,et al.  Luminosity Function of Gamma-Ray Bursts Derived without Benefit of Redshifts , 2001, astro-ph/0101163.

[31]  P. Madau,et al.  ApJ, in press Preprint typeset using L ATEX style emulateapj v. 04/03/99 ON THE ASSOCIATION OF GAMMA–RAY BURSTS WITH MASSIVE STARS: IMPLICATIONS FOR NUMBER COUNTS AND LENSING STATISTICS , 2000 .

[32]  J. Bahcall,et al.  High-energy astrophysical neutrinos: The Upper bound is robust , 1999, hep-ph/9902383.

[33]  H. Athar,et al.  Prospects for observations of high-energy cosmic tau neutrinos , 2000, hep-ph/0006123.

[34]  D. Hooper,et al.  High energy neutrinos from gamma ray bursts: Event rates in neutrino telescopes , 2000, astro-ph/0006027.

[35]  The AMANDA neutrino telescope: Principle of operation and first results , 1999, astro-ph/9906203.

[36]  Chris L. Fryer Mass Limits For Black Hole Formation , 1999, astro-ph/9902315.

[37]  A. Achterberg,et al.  Ultra-high-energy cosmic ray acceleration by relativistic blast waves , 1998, astro-ph/9812316.

[38]  A. MacFadyen,et al.  Collapsars: Gamma-Ray Bursts and Explosions in “Failed Supernovae” , 1998, astro-ph/9810274.

[39]  T. Piran Gamma-ray bursts and the fireball model , 1998, astro-ph/9810256.

[40]  J. Rachen,et al.  Photohadronic Processes in Astrophysical Environments , 1998, Publications of the Astronomical Society of Australia.

[41]  I. Mitrofanov,et al.  Generic Signatures of the Time Profiles of BATSE Cosmic Gamma-Ray Bursts , 1998 .

[42]  J. Bahcall,et al.  High-energy neutrinos from astrophysical sources: An Upper bound , 1998, hep-ph/9807282.

[43]  M. Valle,et al.  On the evolution of the cosmic supernova rates , 1998, astro-ph/9803284.

[44]  J. Rachen,et al.  Photohadronic neutrinos from transients in astrophysical sources , 1998, astro-ph/9802280.

[45]  C. Dermer,et al.  High-energy Gamma Rays from Ultra-high-energy Cosmic-Ray Protons in Gamma-Ray Bursts , 1998, astro-ph/9801027.

[46]  B. Paczyński Are Gamma-Ray Bursts in Star-Forming Regions? , 1997, astro-ph/9710086.

[47]  J. Bloom,et al.  Gamma-ray bursts from stellar remnants - Probing the universe at high redshift , 1997, astro-ph/9708183.

[48]  T. Totani Cosmological Gamma-Ray Bursts and Evolution of Galaxies , 1997, astro-ph/9707051.

[49]  T. Piran,et al.  Can Internal Shocks Produce the Variability in Gamma-Ray Bursts? , 1997, astro-ph/9705013.

[50]  J. Bahcall,et al.  HIGH ENERGY NEUTRINOS FROM COSMOLOGICAL GAMMA-RAY BURST FIREBALLS , 1997, astro-ph/9701231.

[51]  Gerald J. Fishman,et al.  Attributes of Pulses in Long Bright Gamma-Ray Bursts , 1996 .

[52]  M. Vietri The Acceleration of Ultra--High-Energy Cosmic Rays in Gamma-Ray Bursts , 1995, astro-ph/9506081.

[53]  E. Waxman,et al.  Cosmological gamma-ray bursts and the highest energy cosmic rays. , 1995, Physical review letters.

[54]  C. Dermer Binary collision rates of relativistic thermal plasmas. II: Spectra , 1986 .

[55]  C. McKee,et al.  Particle acceleration mechanisms in astrophysics , 1979 .