Genetic deficiency of the mitochondrial protein PGAM5 causes a Parkinson’s-like movement disorder

[1]  G. Churchill,et al.  C57BL/6N Mutation in Cytoplasmic FMRP interacting protein 2 Regulates Cocaine Response , 2013, Science.

[2]  J. Petrosino,et al.  Microbiota Modulate Behavioral and Physiological Abnormalities Associated with Neurodevelopmental Disorders , 2013, Cell.

[3]  T. Dawson,et al.  Parthanatos Mediates AIMP2 Activated Age Dependent Dopaminergic Neuronal Loss , 2013, Nature Neuroscience.

[4]  Peter Vandenabeele,et al.  Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. , 2013, Immunity.

[5]  E. Katunina,et al.  [Epidemiology of Parkinson's disease]. , 2013, Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova.

[6]  L. Galluzzi,et al.  Mitochondria: master regulators of danger signalling , 2012, Nature Reviews Molecular Cell Biology.

[7]  Vamsi K. Mootha,et al.  Mitochondrial disorders as windows into an ancient organelle , 2012, Nature.

[8]  Å. Gustafsson,et al.  Mitochondria and Mitophagy: The Yin and Yang of Cell Death Control , 2012, Circulation research.

[9]  H. Ichijo,et al.  Rhomboid Protease PARL Mediates the Mitochondrial Membrane Potential Loss-induced Cleavage of PGAM5* , 2012, The Journal of Biological Chemistry.

[10]  D. Santos,et al.  Mitochondrial dynamics and neuronal fate in Parkinson's disease. , 2012, Mitochondrion.

[11]  David S. Park,et al.  Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment , 2012, EMBO reports.

[12]  Xiaodong Wang,et al.  The Mitochondrial Phosphatase PGAM5 Functions at the Convergence Point of Multiple Necrotic Death Pathways , 2012, Cell.

[13]  B. Lu,et al.  Mitochondrial dynamics and mitophagy in Parkinson's disease: disordered cellular power plant becomes a big deal in a major movement disorder , 2011, Current Opinion in Neurobiology.

[14]  Jinfeng Liu,et al.  Non-canonical inflammasome activation targets caspase-11 , 2011, Nature.

[15]  A. Brice,et al.  What genetics tells us about the causes and mechanisms of Parkinson's disease. , 2011, Physiological reviews.

[16]  Atsushi Miyawaki,et al.  A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery. , 2011, Chemistry & biology.

[17]  T. Mak,et al.  PTEN-inducible kinase 1 (PINK1)/Park6 is indispensable for normal heart function , 2011, Proceedings of the National Academy of Sciences.

[18]  N. Myeku,et al.  Dynamics of the Degradation of Ubiquitinated Proteins by Proteasomes and Autophagy , 2011, The Journal of Biological Chemistry.

[19]  T. Dawson,et al.  PARIS (ZNF746) Repression of PGC-1α Contributes to Neurodegeneration in Parkinson's Disease , 2011, Cell.

[20]  Wolfdieter Springer,et al.  Regulation of PINK1-Parkin-mediated mitophagy , 2011, Autophagy.

[21]  R. Takahashi,et al.  The Loss of PGAM5 Suppresses the Mitochondrial Degeneration Caused by Inactivation of PINK1 in Drosophila , 2010, PLoS genetics.

[22]  R. Youle,et al.  Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL , 2010, The Journal of cell biology.

[23]  R. Gottlieb,et al.  Autophagy in health and disease. 5. Mitophagy as a way of life. , 2010, American journal of physiology. Cell physiology.

[24]  G. Miller,et al.  Behavioral phenotyping of mouse models of Parkinson's disease , 2010, Behavioural Brain Research.

[25]  Marc Cruts,et al.  Genetic Etiology of Parkinson Disease Associated with Mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 Genes: A Mutation Update , 2010, Human mutation.

[26]  N. Hattori,et al.  PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy , 2010, The Journal of cell biology.

[27]  Xinkun Wang,et al.  Selective Neuronal Vulnerability to Oxidative Stress in the Brain , 2010, Front. Ag. Neurosci..

[28]  R. Youle,et al.  Mechanisms of mitophagy , 2010, Nature Reviews Molecular Cell Biology.

[29]  Ted M. Dawson,et al.  PINK1-dependent recruitment of Parkin to mitochondria in mitophagy , 2009, Proceedings of the National Academy of Sciences.

[30]  Dan R. Littman,et al.  Induction of Intestinal Th17 Cells by Segmented Filamentous Bacteria , 2009, Cell.

[31]  L. Leventhal,et al.  Abnormal gait, due to inflammation but not nerve injury, reflects enhanced nociception in preclinical pain models , 2009, Brain Research.

[32]  Aj Lees,et al.  Parkinson's disease (vol 373, pg 2055, 2009) , 2009 .

[33]  T. Dawson,et al.  Poly(ADP-ribose) signals to mitochondrial AIF: A key event in parthanatos , 2009, Experimental Neurology.

[34]  Tohru Natsume,et al.  Mitochondrial phosphoglycerate mutase 5 uses alternate catalytic activity as a protein serine/threonine phosphatase to activate ASK1 , 2009, Proceedings of the National Academy of Sciences.

[35]  M. Beal,et al.  Mitochondrial dysfunction in the limelight of Parkinson's disease pathogenesis. , 2009, Biochimica et biophysica acta.

[36]  S. Dunnett,et al.  Tests to assess motor phenotype in mice: a user's guide , 2009, Nature Reviews Neuroscience.

[37]  R. Nussbaum,et al.  Parkinson Phenotype in Aged PINK1-Deficient Mice Is Accompanied by Progressive Mitochondrial Dysfunction in Absence of Neurodegeneration , 2009, PloS one.

[38]  M. Hannink,et al.  PGAM5 tethers a ternary complex containing Keap1 and Nrf2 to mitochondria. , 2008, Experimental cell research.

[39]  J. Lippincott-Schwartz,et al.  Addressing membrane protein topology using the fluorescence protease protection (FPP) assay. , 2008, Methods in molecular biology.

[40]  Yifan Xu,et al.  Gait analysis in a murine model of collagen-induced arthritis , 2007, Arthritis research & therapy.

[41]  Douglas R. Porter,et al.  Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice , 2007, Proceedings of the National Academy of Sciences.

[42]  M. Hannink,et al.  PGAM5, a Bcl-XL-interacting Protein, Is a Novel Substrate for the Redox-regulated Keap1-dependent Ubiquitin Ligase Complex* , 2006, Journal of Biological Chemistry.

[43]  T. Dawson,et al.  Diagnosis and treatment of Parkinson disease: molecules to medicine. , 2006, The Journal of clinical investigation.

[44]  Sunhong Kim,et al.  Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin , 2006, Nature.

[45]  Changan Jiang,et al.  Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin , 2006, Nature.

[46]  M. Farrer Genetics of Parkinson disease: paradigm shifts and future prospects , 2006, Nature Reviews Genetics.

[47]  Houeto Jean-Luc [Parkinson's disease]. , 2022, La Revue du praticien.

[48]  M. Chesselet,et al.  3,4-Dihydroxyphenylalanine Reverses the Motor Deficits in Pitx3-Deficient Aphakia Mice: Behavioral Characterization of a Novel Genetic Model of Parkinson's Disease , 2005, The Journal of Neuroscience.

[49]  Ajjai Alva,et al.  Regulation of an ATG7-beclin 1 Program of Autophagic Cell Death by Caspase-8 , 2004, Science.

[50]  R. Nussbaum,et al.  Hereditary Early-Onset Parkinson's Disease Caused by Mutations in PINK1 , 2004, Science.

[51]  B Bioulac,et al.  Relationship between the Appearance of Symptoms and the Level of Nigrostriatal Degeneration in a Progressive 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Lesioned Macaque Model of Parkinson's Disease , 2001, The Journal of Neuroscience.

[52]  N. Ogawa,et al.  Pole test is a useful method for evaluating the mouse movement disorder caused by striatal dopamine depletion , 1997, Journal of Neuroscience Methods.