Program Extraction from Proofs

In classical mathematics, a Platonistic view of the mathematical universe is adopted according which mathematical entities including infinite sets are assumed to exist in some ‘ideal world’, like finite entities exist in the real world. Consequently, any mathematical statement is either true or false. Therefore, the Law of Excluded Middle, ∀x . P (x) ∨ ¬P (x), is classically valid, since for any object x either P (x) is true, or else P (x) is false in which case ¬P (x) is true.

[1]  Helmut Schwichtenberg An arithmetic for polynomial-time computation , 2006, Theor. Comput. Sci..

[2]  A. Troelstra Metamathematical investigation of intuitionistic arithmetic and analysis , 1973 .

[3]  G. Gentzen Die Widerspruchsfreiheit der reinen Zahlentheorie , 1936 .

[4]  Klaus Aehlig,et al.  An elementary fragment of second-order lambda calculus , 2002, TOCL.

[5]  Zuber,et al.  Proof Theory at Work: Program Development in the Minlog System , 1998 .

[6]  Harold Simmons,et al.  The realm of primitive recursion , 1988, Arch. Math. Log..

[7]  Stephen A. Cook,et al.  Computability and Complexity of Higher Type Functions , 1992 .

[8]  Ulrich Berger,et al.  Uniform Heyting arithmetic , 2005, Ann. Pure Appl. Log..

[9]  Stephen A. Cook,et al.  A new recursion-theoretic characterization of the polytime functions , 1992, STOC '92.

[10]  J. Urry Complexity , 2006, Interpreting Art.

[11]  Von Kurt Gödel,et al.  ÜBER EINE BISHER NOCH NICHT BENÜTZTE ERWEITERUNG DES FINITEN STANDPUNKTES , 1958 .

[12]  Arnold Beckmann,et al.  A term rewriting characterization of the polytime functions and related complexity classes , 1996, Arch. Math. Log..

[13]  W. A. Howard Assignment of Ordinals to Terms for Primitive Recursive Functionals of Finite Type , 1970 .

[14]  Martin Hofmann,et al.  A New "Feasible" Arithmetic , 2002, J. Symb. Log..

[15]  P. Martin-Löf Hauptsatz for the Intuitionistic Theory of Iterated Inductive Definitions , 1971 .

[16]  Stanley S. Wainer,et al.  Elementary arithmetic , 2005, Ann. Pure Appl. Log..

[17]  Daniel Leivant Predicative Recurrence in Finite Types , 1994, LFCS.

[18]  Bruce M. Kapron,et al.  Characterizations of the basic feasible functionals of finite type , 1989, 30th Annual Symposium on Foundations of Computer Science.

[19]  S. S. Wainer,et al.  Ordinal Complexity of Recursive Definitions , 1992, Inf. Comput..