Unified description of corpuscular and fuzzy bosonic dark matter

We derive from first principles equations for bosonic, non-relativistic and self-interacting dark matter which can include both a condensed, low momentum ``fuzzy'' component and one with higher momenta that may be approximated as a collection of particles. The resulting coupled equations consist of a modified Gross-Pitaevskii equation describing the condensate and a kinetic equation describing the higher momentum modes, the ``particles'', along with the Poisson equation for the gravitational potential sourced by the density of both components. Our derivation utilizes the Schwinger-Keldysh path integral formalism and applies a semi-classical approximation which can also accommodate collisional terms amongst the particles and between the particles and the condensate to second order in the self-coupling strength. The equations can therefore describe both CDM and Fuzzy Dark Matter in a unified way, allowing for the coexistence of both phases and the inclusion of quartic self-interactions.

[1]  L. Hernquist,et al.  Cosmological structure formation and soliton phase transition in Fuzzy Dark Matter with axion self-interactions , 2023, Monthly Notices of the Royal Astronomical Society.

[2]  N. Proukakis,et al.  Coherent and incoherent structures in fuzzy dark matter halos , 2022, Monthly Notices of the Royal Astronomical Society.

[3]  D. Marsh,et al.  Improved mixed dark matter halo model for ultralight axions , 2022, Physical Review D.

[4]  M. Baldi,et al.  Fuzzy Aquarius: evolution of a Milky-way like system in the Fuzzy Dark Matter scenario , 2022, Monthly Notices of the Royal Astronomical Society.

[5]  D. Boyanovsky,et al.  Brownian axionlike particles , 2022, Physical Review D.

[6]  D. Mota,et al.  Cosmological simulations of self-interacting Bose-Einstein condensate dark matter , 2022, Astronomy & Astrophysics.

[7]  A. M. Mateo,et al.  Self-Interacting Superfluid Dark Matter Droplets , 2022, 2201.12418.

[8]  O. Hahn,et al.  Large-scale dark matter simulations , 2021, Living Reviews in Computational Astrophysics.

[9]  C. Prescod-Weinstein,et al.  Analysis of Bose-Einstein condensation times for self-interacting scalar dark matter , 2021, Physical Review D.

[10]  D. Marsh,et al.  Relaxation times for Bose-Einstein condensation by self-interaction and gravity , 2021, Physical Review D.

[11]  Hsi-Yu Schive,et al.  Soliton oscillations and revised constraints from Eridanus II of fuzzy dark matter , 2021, Physical Review D.

[12]  L. Hui Wave Dark Matter , 2021, Annual Review of Astronomy and Astrophysics.

[13]  V. Springel,et al.  Structure formation in large-volume cosmological simulations of fuzzy dark matter: impact of the non-linear dynamics , 2021, 2101.01828.

[14]  Elisa G. M. Ferreira Ultra-light dark matter , 2020, The Astronomy and Astrophysics Review.

[15]  A. Trombettoni,et al.  Critical Transport and Vortex Dynamics in a Thin Atomic Josephson Junction. , 2019, Physical review letters.

[16]  T. Prokopec,et al.  Field-theoretic approach to large-scale structure formation , 2019, Physical Review D.

[17]  S. Tremaine,et al.  Relaxation in a Fuzzy Dark Matter Halo , 2018, The Astrophysical Journal.

[18]  Jens C. Niemeyer,et al.  Formation and structure of ultralight bosonic dark matter halos , 2018, Physical Review D.

[19]  I. Tkachev,et al.  Gravitational Bose-Einstein Condensation in the Kinetic Regime. , 2018, Physical review letters.

[20]  F. Dalfovo,et al.  Dynamical equilibration across a quenched phase transition in a trapped quantum gas , 2017, Communications Physics.

[21]  Hsi-Yu Schive,et al.  How do stars affect ψDM haloes , 2017, 1712.01947.

[22]  V. Desjacques,et al.  Impact of ultralight axion self-interactions on the large scale structure of the Universe , 2017, 1709.07946.

[23]  K. L. Lee,et al.  Time-of-flight expansion of binary Bose–Einstein condensates at finite temperature , 2017, 1712.07481.

[24]  Michael Boylan-Kolchin,et al.  Small-Scale Challenges to the ΛCDM Paradigm , 2017, 1707.04256.

[25]  L. Hernquist,et al.  Galaxy formation with BECDM - I. Turbulence and relaxation of idealized haloes. , 2017, Monthly notices of the Royal Astronomical Society.

[26]  A. Popolo,et al.  Small Scale Problems of the Λ CDM Model : A Short Review , 2017 .

[27]  N. Proukakis,et al.  Non-equilibrium atomic condensates and mixtures: collective modes, condensate growth and thermalisation , 2016, 1607.06939.

[28]  J. Niemeyer,et al.  Simulations of solitonic core mergers in ultralight axion dark matter cosmologies , 2016, 1606.05151.

[29]  D. Marsh,et al.  Axion Cosmology , 2015, 1510.07633.

[30]  J. Khoury,et al.  Theory of dark matter superfluidity , 2015, 1507.01019.

[31]  A. Guth,et al.  Do dark matter axions form a condensate with long-range correlation? , 2014, 1412.5930.

[32]  Fabio Governato,et al.  Cold dark matter: Controversies on small scales , 2013, Proceedings of the National Academy of Sciences.

[33]  T. Broadhurst,et al.  Cosmic structure as the quantum interference of a coherent dark wave , 2014, Nature Physics.

[34]  A. J. Allen,et al.  Evaporative cooling of cold atoms at surfaces , 2014, 1405.1642.

[35]  N. Berloff,et al.  Modeling quantum fluid dynamics at nonzero temperatures , 2014, Proceedings of the National Academy of Sciences.

[36]  Matthew J. Davis,et al.  Quantum Gases: Finite Temperature and Non-Equilibrium Dynamics , 2013 .

[37]  S. White,et al.  Dark matter and cosmic structure , 2012, 1210.0544.

[38]  A. Kamenev Field Theory of Non-Equilibrium Systems , 2011 .

[39]  P. Shapiro,et al.  Angular Momentum and Vortex Formation in Bose-Einstein-Condensed Cold Dark Matter Haloes , 2011, 1106.1256.

[40]  P. Chavanis Mass-radius relation of Newtonian self-gravitating Bose-Einstein condensates with short-range interactions: II. Numerical results , 2011, 1103.2050.

[41]  M. Weitz,et al.  Bose–Einstein condensation of photons in an optical microcavity , 2010, Nature.

[42]  T. Nikuni,et al.  Bose-Condensed Gases at Finite Temperatures , 2009 .

[43]  P. Sikivie,et al.  Bose-Einstein condensation of dark matter axions. , 2009, Physical review letters.

[44]  C. Barenghi,et al.  Finite-temperature vortex dynamics in Bose-Einstein condensates , 2008, 0809.4400.

[45]  Nick P. Proukakis,et al.  Finite-temperature models of Bose–Einstein condensation , 2008, 0810.0210.

[46]  C. W. Gardiner,et al.  Dynamics and statistical mechanics of ultra-cold Bose gases using c-field techniques , 2008, 0809.1487.

[47]  J. Rammer,et al.  Quantum Field Theory of Non-equilibrium States , 2007 .

[48]  C. Boehmer,et al.  Can dark matter be a Bose–Einstein condensate? , 2007, 0705.4158.

[49]  C. Barenghi,et al.  Dark-soliton dynamics in Bose-Einstein condensates at finite temperature , 2006, cond-mat/0612218.

[50]  V. Savona,et al.  Bose–Einstein condensation of exciton polaritons , 2006, Nature.

[51]  Yves Pomeau,et al.  Kinetic theory and Bose–Einstein condensation , 2004 .

[52]  W. Ketterle Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser* , 2002 .

[53]  C. Wieman,et al.  Nobel Lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments , 2002 .

[54]  N. Berloff,et al.  Scenario of strongly nonequilibrated Bose-Einstein condensation , 2002 .

[55]  B. Jackson,et al.  Quadrupole collective modes in trapped finite-temperature Bose-Einstein condensates. , 2002, Physical review letters.

[56]  S. Colombi,et al.  Large scale structure of the universe and cosmological perturbation theory , 2001, astro-ph/0112551.

[57]  C. Pethick,et al.  Bose–Einstein Condensation in Dilute Gases: Appendix. Fundamental constants and conversion factors , 2008 .

[58]  R. Duine,et al.  Stochastic dynamics of a trapped Bose-Einstein condensate , 2001, cond-mat/0107432.

[59]  H. Stoof,et al.  Dynamics of Fluctuating Bose–Einstein Condensates , 2000, cond-mat/0007026.

[60]  R. Barkana,et al.  Cold and Fuzzy Dark Matter , 2000, astro-ph/0003365.

[61]  H. Stoof,et al.  Condensate growth in trapped Bose gases , 2000, cond-mat/0001323.

[62]  T. Nikuni,et al.  Dynamics of Trapped Bose Gases at Finite Temperatures , 1999, cond-mat/9903029.

[63]  F. Dalfovo,et al.  Theory of Bose-Einstein condensation in trapped gases , 1998, cond-mat/9806038.

[64]  H. Stoof Coherent Versus Incoherent Dynamics During Bose-Einstein Condensation in Atomic Gases , 1998, cond-mat/9805393.

[65]  H. Stoof Initial stages of Bose-Einstein condensation , 1996, cond-mat/9608151.

[66]  Griffin,et al.  Conserving and gapless approximations for an inhomogeneous Bose gas at finite temperatures. , 1996, Physical review. B, Condensed matter.

[67]  Semikoz,et al.  Kinetics of Bose condensation. , 1994, Physical review letters.

[68]  Boris Svistunov,et al.  Kinetics of bose condensation in an interacting bose gas , 1992 .

[69]  Hu,et al.  Nonequilibrium quantum fields: Closed-time-path effective action, Wigner function, and Boltzmann equation. , 1988, Physical review. D, Particles and fields.

[70]  Jordan Effective field equations for expectation values. , 1986, Physical review. D, Particles and fields.

[71]  T. R. Kirkpatrick,et al.  Transport coefficients in a dilute but condensed Bose gas , 1985 .

[72]  T. R. Kirkpatrick,et al.  Transport in a dilute but condensed nonideal Bose gas: Kinetic equations , 1985 .

[73]  T. R. Kirkpatrick,et al.  Transport theory for a weakly interacting condensed Bose gas , 1983 .

[74]  O. Penrose,et al.  Bose-Einstein Condensation and Liquid Helium , 1956 .

[75]  L. Tisza,et al.  Transport Phenomena in Helium II , 1938, Nature.