C5Li7(+) and O2Li5(+) as noble-gas-trapping agents.

The noble-gas-trapping ability of the star-shaped C(5)Li(7)(+) cluster and O(2)Li(5)(+) super-alkali cluster is studied by using ab initio and density functional theory (DFT) at the MP2 and M05-2X levels with 6-311+G(d,p) and 6-311+G(d) basis sets. These clusters are shown to be effective noble-gas-trapping agents. The stability of noble-gas-loaded clusters is analyzed in terms of dissociation energies, reaction enthalpies, and conceptual DFT-based reactivity descriptors. The presence of an external electric field improves the dissociation energy.

[1]  A (T-P) phase diagram of hydrogen storage on (N4C3H)6Li6. , 2011, The journal of physical chemistry. A.

[2]  Kenneth B. Wiberg,et al.  Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane , 1968 .

[3]  Kelling J. Donald,et al.  Influence of endohedral confinement on the electronic interaction between He atoms: a He2@C20H20 case study. , 2009, Chemistry.

[4]  Mika Pettersson,et al.  The mechanism of formation and infrared-induced decomposition of HXeI in solid Xe , 1997 .

[5]  F. Bickelhaupt,et al.  Bonding of xenon hydrides. , 2009, Journal of Physical Chemistry A.

[6]  P. Chattaraj,et al.  The hydrogen trapping potential of some Li-doped star-like clusters and super-alkali systems. , 2012, Physical chemistry chemical physics : PCCP.

[7]  Q. Sun,et al.  Electric field enhanced hydrogen storage on polarizable materials substrates , 2010, Proceedings of the National Academy of Sciences.

[8]  Jan Lundell,et al.  Neutral rare‐gas containing charge‐transfer molecules in solid matrices. II. HXeH, HXeD, and DXeD in Xe , 1995 .

[9]  Toshiharu Mori,et al.  Isotope effect and nature of bonding in the cluster ions H+3(Ar)n and D+3(Ar)n , 1989 .

[10]  L. Stein Removal of Xenon and Radon from Contaminated Atmospheres with Dioxygenyl Hexafluoroantimonate, O2SbF6 , 1973, Nature.

[11]  P. Chattaraj,et al.  Toward analyzing some neutral and cationic boron–lithium clusters (BxLiy x = 2–6; y = 1, 2) as effective hydrogen storage materials: A conceptual density functional study , 2012 .

[12]  F. Bickelhaupt,et al.  Radon hydrides: structure and bonding. , 2011, Physical chemistry chemical physics : PCCP.

[13]  M. Pettersson,et al.  New Rare-Gas-Containing Neutral Molecules , 1999 .

[14]  R. Parr,et al.  Absolute hardness: companion parameter to absolute electronegativity , 1983 .

[15]  K. Srinivasu,et al.  Theoretical investigation of hydrogen adsorption in all-metal aromatic clusters , 2012 .

[16]  G. Gutsev,et al.  DVM X calculations on the electronic structure of , 1982 .

[17]  Martin Saunders,et al.  Stable Compounds of Helium and Neon: He@C60 and Ne@C60 , 1993, Science.

[18]  Jan Lundell,et al.  HXeSH, the First Example of a Xenon-Sulfur Bond , 1998 .

[19]  Trapping of noble gases (He–Kr) by the aromatic H3+ and Li3+ species: a conceptual DFT approach , 2009, 0911.5381.

[20]  Wolfram Koch,et al.  Light noble gas chemistry: structures, stabilities, and bonding of helium, neon, and argon compounds , 1990 .

[21]  Gernot Frenking,et al.  Is it possible to synthesize a neutral noble gas compound containing a Ng-Ng bond? A theoretical study of H-Ng-Ng-F (Ng = Ar, Kr, Xe). , 2009, Angewandte Chemie.

[22]  A. S. Dickinson,et al.  Accuracy of recent potential energy surfaces for the He-N2 interaction. I. Virial and bulk transport coefficients. , 2007, The Journal of chemical physics.

[23]  Pratim Kumar Chattaraj,et al.  A computational study on the hydrogen adsorption capacity of various lithium—Doped boron hydrides , 2012, J. Comput. Chem..

[24]  L. Pauling The Formulas of Antimonic Acid and the Antimonates , 1933 .

[25]  W. Jäger,et al.  Investigation of the Ne-NH3 van der Waals complex: Rotational spectrum and ab initio calculations , 2001 .

[26]  Alexander I. Boldyrev,et al.  The Theoretical Investigation of the Electron Affinity of Chemical Compounds , 2007 .

[27]  Hui Li,et al.  Energy decomposition analysis of covalent bonds and intermolecular interactions. , 2009, The Journal of chemical physics.

[28]  M. Pettersson,et al.  Photochemistry of HNCO in Solid Xenon: Photoinduced and Thermally Activated Formation of HXeNCO † , 2000 .

[29]  Mika Pettersson,et al.  A Chemical Compound Formed from Water and Xenon: HXeOH , 1999 .

[30]  D. Cremer,et al.  The chemistry of the noble gas elements helium, neon, and argon — Experimental facts and theoretical predictions , 1990 .

[31]  G. Pimentel,et al.  Infrared detection of xenon dichloride , 1967 .

[32]  William Tiznado,et al.  Stabilizing carbon-lithium stars. , 2011, Physical chemistry chemical physics : PCCP.

[33]  R. Parr,et al.  Principle of maximum hardness , 1991 .

[34]  J. Pilmé,et al.  H3(+) as a trap for noble gases-3: multiple trapping of neon, argon, and krypton in X(n)H3(+) (n = 1-3). , 2009, The Journal of chemical physics.

[35]  P. Fuentealba,et al.  Variation of the Electrophilicity Index along the Reaction Path. , 2003, The journal of physical chemistry. A.

[36]  F. Pauzat,et al.  H3+ as a trap for noble gases: 1—The case of Argon , 2005 .

[37]  Wolfram Koch,et al.  Stabilities and nature of the attractive interactions in HeBeO, NeBeO, and ArBeO and a comparison with analogs NGLiF, NGBN, and NGLiH (NG = He, Ar). A theoretical investigation , 1988 .

[38]  J. J. Turner,et al.  Krypton Fluoride: Preparation by the Matrix Isolation Technique , 1963, Science.

[39]  Wolfram Koch,et al.  Theoretical investigations of small multiply charged cations. III. NeN2 , 1986 .

[40]  K. Christe A Renaissance in Noble Gas Chemistry. , 2001, Angewandte Chemie.

[41]  Gernot Frenking,et al.  Neutral noble gas compounds exhibiting a Xe-Xe bond: structure, stability and bonding situation. , 2012, Physical chemistry chemical physics : PCCP.

[42]  Neil Bartlett,et al.  Concerning the nature of XePtF6 , 2000 .

[43]  F. Pauzat,et al.  H(3) (+) as a trap for noble gases--2: structure and energetics of XH(3) (+) complexes from X=neon to xenon. , 2007, The Journal of chemical physics.

[44]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[45]  M. Heaven,et al.  Spectroscopic characterization of the C2-Ne van der Waals complex. , 2006, The Journal of chemical physics.

[46]  E. Akturk,et al.  High-capacity hydrogen storage by metallized graphene , 2008, 0901.1944.

[47]  Gernot Frenking,et al.  Structures and bond energies of the noble gas complexes NgBeO (NgAr, Kr, Xe) , 1994 .

[48]  Donald G Truhlar,et al.  Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions. , 2006, Journal of chemical theory and computation.

[49]  E. G. Hope,et al.  Recent Advances in Noble-Gas Chemistry , 1998 .

[50]  Jesus M. Ugalde,et al.  Designing 3-D molecular stars. , 2009, Journal of the American Chemical Society.

[51]  Hugo A. Jiménez-Vázquez,et al.  Binding Energy in and Equilibrium Constant of Formation for the Dodecahedrane Compounds He@C20H20 and Ne@C20H20 , 2001 .

[52]  P. Chattaraj,et al.  Aromaticity and hydrogen storage capability of planar N64- and N42- rings , 2011 .

[53]  P. Chattaraj,et al.  Role of aromaticity and charge of a system in its hydrogen trapping potential and vice versa. , 2011, Physical chemistry chemical physics : PCCP.

[54]  K. O. Christe Die Renaissance der Edelgaschemie , 2001 .

[55]  P. Chattaraj,et al.  Potential use of some metal clusters as hydrogen storage materials—a conceptual DFT approach , 2011, Journal of molecular modeling.

[56]  Gernot Frenking,et al.  Is this a chemical bond? A theoretical study of Ng2@C60 (Ng=He, Ne, Ar, Kr, Xe). , 2007, Chemistry.

[57]  Gernot Frenking,et al.  Donor acceptor complexes of noble gases. , 2009, Journal of the American Chemical Society.

[58]  G. P. Das,et al.  Anti-Kubas Type Interaction in Hydrogen Storage on a Li Decorated BHNH Sheet: A First-Principles Based Study , 2012 .