Vertebrate endoderm development and organ formation.

The endoderm germ layer contributes to the respiratory and gastrointestinal tracts and to all of their associated organs. Over the past decade, studies in vertebrate model organisms, including frog, fish, chick, and mouse, have greatly enhanced our understanding of the molecular basis of endoderm organ development. We review this progress with a focus on early stages of endoderm organogenesis including endoderm formation, gut tube morphogenesis and patterning, and organ specification. Lastly, we discuss how developmental mechanisms that regulate endoderm organogenesis are used to direct differentiation of embryonic stem cells into specific adult cell types, which function to alleviate disease symptoms in animal models.

[1]  N. L. Douarin Synthèse du glycogène dans les hépatocytes en voie de différenciation: rôle des mésenchymes homologue et hétérologues , 1968 .

[2]  G. Rosenquist The location of the pregut endoderm in the chick embryo at the primitive streak stage as determined by radioautographic mapping. , 1971, Developmental biology.

[3]  S. Fukuda-Taira Hepatic induction in the avian embryo: specificity of reactive endoderm and inductive mesoderm. , 1981, Journal of embryology and experimental morphology.

[4]  R. Pedersen,et al.  Cell fate and cell lineage in the endoderm of the presomite mouse embryo, studied with an intracellular tracer. , 1986, Developmental biology.

[5]  J M Slack,et al.  Fate map for the 32-cell stage of Xenopus laevis. , 1987, Development.

[6]  R. Pedersen,et al.  Cell fate, morphogenetic movement and population kinetics of embryonic endoderm at the time of germ layer formation in the mouse. , 1987, Development.

[7]  J C Smith,et al.  Vegetal pole cells and commitment to form endoderm in Xenopus laevis. , 1987, Developmental biology.

[8]  S. Moody,et al.  Fates of the blastomeres of the 16-cell stage Xenopus embryo. , 1987, Developmental biology.

[9]  J. Smith,et al.  Graded changes in dose of a Xenopus activin A homologue elicit stepwise transitions in embryonic cell fate , 1990, Nature.

[10]  C. Kimmel,et al.  Origin and organization of the zebrafish fate map. , 1990, Development.

[11]  R. Keller Chapter 5 Early Embryonic Development of Xenopus laevis , 1991 .

[12]  J. Smith,et al.  The Xenopus Brachyury promoter is activated by FGF and low concentrations of activin and suppressed by high concentrations of activin and by paired-type homeodomain proteins. , 1997, Genes & development.

[13]  C. Hudson,et al.  Xsox17α and -β Mediate Endoderm Formation in Xenopus , 1997, Cell.

[14]  R. Beddington,et al.  Hex: a homeobox gene revealing peri-implantation asymmetry in the mouse embryo and an early transient marker of endothelial cell precursors. , 1998, Development.

[15]  P. Lemaire,et al.  A role for the vegetally expressed Xenopus gene Mix.1 in endoderm formation and in the restriction of mesoderm to the marginal zone. , 1998, Development.

[16]  J. Rossant,et al.  The transcription factor HNF3beta is required in visceral endoderm for normal primitive streak morphogenesis. , 1998, Development.

[17]  G. Martin,et al.  Targeted disruption of Fgf8 causes failure of cell migration in the gastrulating mouse embryo. , 1999, Genes & development.

[18]  W. Alexander,et al.  Suckling defect in mice lacking the soluble haemopoietin receptor NR6 , 1999, Current Biology.

[19]  D. Stainier,et al.  A molecular pathway leading to endoderm formation in zebrafish , 1999, Current Biology.

[20]  K. Zaret,et al.  Initiation of mammalian liver development from endoderm by fibroblast growth factors. , 1999, Science.

[21]  D. Stainier,et al.  A role for the extraembryonic yolk syncytial layer in patterning the zebrafish embryo suggested by properties of the hex gene , 1999, Current Biology.

[22]  H. Woodland,et al.  Mode of action of VegT in mesoderm and endoderm formation. , 1999, Development.

[23]  C. Nüsslein-Volhard,et al.  Origin and development of the zebrafish endoderm. , 1999, Development.

[24]  J. Gurdon,et al.  Anterior Endomesoderm Specification in Xenopusby Wnt/-catenin and TGF- Signalling Pathways , 1999 .

[25]  J. Gurdon,et al.  Anterior endomesoderm specification in Xenopus by Wnt/beta-catenin and TGF-beta signalling pathways. , 1999, Developmental biology.

[26]  R. Old,et al.  Regulation of the early expression of the Xenopus nodal-related 1 gene, Xnr1. , 2000, Development.

[27]  D. Melton,et al.  Early mouse endoderm is patterned by soluble factors from adjacent germ layers. , 2000, Development.

[28]  J. Slack,et al.  The Xenopus tadpole gut: fate maps and morphogenetic movements. , 2000, Development.

[29]  D. Melton,et al.  Activin receptor patterning of foregut organogenesis. , 2000, Genes & development.

[30]  D. Kioussis,et al.  The homeobox gene Hex is required in definitive endodermal tissues for normal forebrain, liver and thyroid formation. , 2000, Development.

[31]  S. Germain,et al.  Homeodomain and winged-helix transcription factors recruit activated Smads to distinct promoter elements via a common Smad interaction motif. , 2000, Genes & development.

[32]  Y. Saijoh,et al.  Activin/nodal responsiveness and asymmetric expression of a Xenopus nodal-related gene converge on a FAST-regulated module in intron 1. , 2000, Development.

[33]  C. Wylie,et al.  Maternal VegT is the initiator of a molecular network specifying endoderm in Xenopus laevis. , 2001, Development.

[34]  P. Carlsson,et al.  Haploinsufficiency of the forkhead gene Foxf1, a target for sonic hedgehog signaling, causes lung and foregut malformations. , 2001, Development.

[35]  J. Rossant,et al.  FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak. , 2001, Developmental cell.

[36]  J. Slack,et al.  Endoderm specification and differentiation in Xenopus embryos. , 2001, Developmental biology.

[37]  J. Thiery,et al.  Fgf10 is essential for maintaining the proliferative capacity of epithelial progenitor cells during early pancreatic organogenesis. , 2001, Development.

[38]  A. Hart,et al.  Mixl1 is required for axial mesendoderm morphogenesis and patterning in the murine embryo. , 2002, Development.

[39]  Yoshiakira Kanai,et al.  Depletion of definitive gut endoderm in Sox17-null mutant mice. , 2002, Development.

[40]  L. Gresh,et al.  Bile system morphogenesis defects and liver dysfunction upon targeted deletion of HNF1beta. , 2002, Development.

[41]  S. Pauls,et al.  BMP signalling regulates anteroposterior endoderm patterning in zebrafish , 2002, Mechanisms of Development.

[42]  K. Yamamura,et al.  Region‐specific gastrointestinal Hox code during murine embryonal gut development , 2002, Development, growth & differentiation.

[43]  D. Stainier A glimpse into the molecular entrails of endoderm formation. , 2002, Genes & development.

[44]  Heiko Lickert,et al.  Formation of multiple hearts in mice following deletion of beta-catenin in the embryonic endoderm. , 2002, Developmental cell.

[45]  Ray Keller,et al.  Mesendoderm Extension and Mantle Closure in Xenopus laevis Gastrulation: Combined Roles for Integrin α5β1, Fibronectin, and Tissue Geometry , 2002 .

[46]  T. Roskams,et al.  The onecut transcription factor HNF6 is required for normal development of the biliary tract. , 2002, Development.

[47]  Yan Zhou,et al.  Haploinsufficiency of the Mouse Forkhead Box f1 Gene Causes Defects in Gall Bladder Development* , 2002, The Journal of Biological Chemistry.

[48]  J. Brennan,et al.  The Foxh1-dependent autoregulatory enhancer controls the level of Nodal signals in the mouse embryo. , 2002, Development.

[49]  P. Mourrain,et al.  Molecular integration of casanova in the Nodal signalling pathway controlling endoderm formation. , 2002, Development.

[50]  V. Prince,et al.  Retinoic Acid Signaling Is Required for a Critical Early Step in Zebrafish Pancreatic Development , 2002, Current Biology.

[51]  K. Zaret,et al.  Regulatory phases of early liver development: paradigms of organogenesis , 2002, Nature Reviews Genetics.

[52]  K. Schaible,et al.  The roles of three signaling pathways in the formation and function of the Spemann Organizer. , 2002, Development.

[53]  G. Schoenwolf,et al.  Epiblast and primitive-streak origins of the endoderm in the gastrulating chick embryo , 2003, Development.

[54]  D. Stainier,et al.  From endoderm formation to liver and pancreas development in zebrafish , 2003, Mechanisms of Development.

[55]  H. Okamoto,et al.  Integration of multiple signal transducing pathways on Fgf response elements of the Xenopus caudal homologue Xcad3 , 2003, Development.

[56]  M. Rex,et al.  VegT activation of the early zygotic gene Xnr5 requires lifting of Tcf-mediated repression in the Xenopus blastula , 2003, Mechanisms of Development.

[57]  D. Stainier,et al.  A Cellular Framework for Gut-Looping Morphogenesis in Zebrafish , 2003, Science.

[58]  Anne Grapin-Botton,et al.  Signals from lateral plate mesoderm instruct endoderm toward a pancreatic fate. , 2003, Developmental biology.

[59]  K. Anderson,et al.  Essential Role of Glycosaminoglycans in Fgf Signaling during Mouse Gastrulation , 2003, Cell.

[60]  W. Shoji,et al.  Vegfc is required for vascular development and endoderm morphogenesis in zebrafish , 2004, EMBO reports.

[61]  F. Wardle,et al.  Refinement of gene expression patterns in the early Xenopus embryo , 2004, Development.

[62]  C. Wylie,et al.  The role of Mixer in patterning the early Xenopus embryo , 2004, Development.

[63]  P. Nieuwkoop,et al.  The formation of the mesoderm in urodelean amphibians , 1969, Wilhelm Roux' Archiv für Entwicklungsmechanik der Organismen.

[64]  D. Stainier,et al.  The POU domain protein spg (pou2/Oct4) is essential for endoderm formation in cooperation with the HMG domain protein casanova. , 2004, Developmental cell.

[65]  D. Roberts,et al.  SOX9 specifies the pyloric sphincter epithelium through mesenchymal-epithelial signals , 2004, Development.

[66]  R. Behringer,et al.  Regionalization of cell fates and cell movement in the endoderm of the mouse gastrula and the impact of loss of Lhx1(Lim1) function. , 2004, Developmental biology.

[67]  T. Pieler,et al.  Retinoic acid signaling is essential for pancreas development and promotes endocrine at the expense of exocrine cell differentiation in Xenopus. , 2004, Developmental biology.

[68]  R. Beddington,et al.  Hex homeobox gene-dependent tissue positioning is required for organogenesis of the ventral pancreas , 2004, Development.

[69]  Gordon Keller,et al.  Development of definitive endoderm from embryonic stem cells in culture , 2004, Development.

[70]  Y. Saijoh,et al.  Nodal antagonists regulate formation of the anteroposterior axis of the mouse embryo , 2004, Nature.

[71]  A. Zorn,et al.  Sox17 and β-catenin cooperate to regulate the transcription of endodermal genes , 2004 .

[72]  W. Driever,et al.  Zebrafish pou5f1/pou2, Homolog of Mammalian Oct4, Functions in the Endoderm Specification Cascade , 2004, Current Biology.

[73]  Hans Clevers,et al.  Signaling pathways in intestinal development and cancer. , 2004, Annual review of cell and developmental biology.

[74]  Janet Rossant,et al.  Cdx2 is essential for axial elongation in mouse development. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[75]  Ryan M. Anderson,et al.  The mammalian twisted gastrulation gene functions in foregut and craniofacial development. , 2004, Developmental biology.

[76]  Hans Clevers,et al.  Hindgut defects and transformation of the gastro‐intestinal tract in Tcf4−/−/Tcf1−/− embryos , 2004, The EMBO journal.

[77]  E. Davidson,et al.  Gene regulatory network controlling embryonic specification in the sea urchin. , 2004, Current opinion in genetics & development.

[78]  Matthew Loose,et al.  A genetic regulatory network for Xenopus mesendoderm formation. , 2004, Developmental biology.

[79]  D. Melton,et al.  β-Catenin is essential for pancreatic acinar but not islet development , 2005, Development.

[80]  Klaus H. Kaestner,et al.  The initiation of liver development is dependent on Foxa transcription factors , 2005, Nature.

[81]  E. Kroon,et al.  Efficient differentiation of human embryonic stem cells to definitive endoderm , 2005, Nature Biotechnology.

[82]  G. Farr,et al.  Eomesodermin is a localized maternal determinant required for endoderm induction in zebrafish. , 2005, Developmental cell.

[83]  J. I. Izpisúa Belmonte,et al.  Noncanonical Wnt signaling regulates midline convergence of organ primordia during zebrafish development. , 2005, Genes & development.

[84]  R. Shivdasani,et al.  The stomach mesenchymal transcription factor Barx1 specifies gastric epithelial identity through inhibition of transient Wnt signaling. , 2005, Developmental cell.

[85]  Tsutomu Chiba,et al.  Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells , 2005, Nature Biotechnology.

[86]  D. Roberts,et al.  Bone morphogenetic protein signaling pathway plays multiple roles during gastrointestinal tract development , 2005, Developmental dynamics : an official publication of the American Association of Anatomists.

[87]  S. Duncan,et al.  Embryonic development of the liver , 2005, Hepatology.

[88]  A. Grapin-Botton Antero-posterior patterning of the vertebrate digestive tract: 40 years after Nicole Le Douarin's PhD thesis. , 2005, The International journal of developmental biology.

[89]  Chikara Furusawa,et al.  Characterization of mesendoderm: a diverging point of the definitive endoderm and mesoderm in embryonic stem cell differentiation culture , 2005, Development.

[90]  Ray Keller,et al.  Cell migration during gastrulation. , 2005, Current opinion in cell biology.

[91]  J. Wells,et al.  Different thresholds of fibroblast growth factors pattern the ventral foregut into liver and lung , 2004, Development.

[92]  G. Duester,et al.  Retinoic acid generated by Raldh2 in mesoderm is required for mouse dorsal endodermal pancreas development , 2005, Developmental dynamics : an official publication of the American Association of Anatomists.

[93]  P. Scambler,et al.  Microarray analysis detects differentially expressed genes in the pharyngeal region of mice lacking Tbx1. , 2005, Developmental biology.

[94]  K. Zaret,et al.  Distinct populations of endoderm cells converge to generate the embryonic liver bud and ventral foregut tissues. , 2005, Developmental biology.

[95]  Alexander F Schier,et al.  Molecular genetics of axis formation in zebrafish. , 2005, Annual review of genetics.

[96]  C. Stern,et al.  Fate and plasticity of the endoderm in the early chick embryo. , 2006, Developmental biology.

[97]  M. Hibi,et al.  Cdx-Hox code controls competence for responding to Fgfs and retinoic acid in zebrafish neural tissue , 2006, Development.

[98]  A. Kuroiwa,et al.  Fgf signaling negatively regulates Nodal-dependent endoderm induction in zebrafish. , 2006, Developmental biology.

[99]  N. Kobayashi,et al.  Reversal of mouse hepatic failure using an implanted liver-assist device containing ES cell–derived hepatocytes , 2006, Nature Biotechnology.

[100]  Hans Clevers,et al.  Wnt/β-Catenin Signaling in Development and Disease , 2006, Cell.

[101]  J. Lü,et al.  Regulation of early lung morphogenesis: questions, facts and controversies , 2006, Development.

[102]  Robert Opoka,et al.  FGF signaling is necessary for establishing gut tube domains alongthe anterior–posterior axis in vivo , 2006, Mechanisms of Development.

[103]  Gareth E. Jones,et al.  A role for GATA factors in Xenopus gastrulation movements , 2006, Mechanisms of Development.

[104]  D. Constam,et al.  The nodal precursor acting via activin receptors induces mesoderm by maintaining a source of its convertases and BMP4. , 2006, Developmental cell.

[105]  Gordon Keller,et al.  BMP-4 is required for hepatic specification of mouse embryonic stem cell–derived definitive endoderm , 2006, Nature Biotechnology.

[106]  J. Baker,et al.  Genomic profiling of Mixer and Sox17β targets during Xenopus endoderm development , 2006, Developmental dynamics : an official publication of the American Association of Anatomists.

[107]  P. Dollé,et al.  Retinoic acid regulates morphogenesis and patterning of posterior foregut derivatives. , 2006, Developmental biology.

[108]  E. Kroon,et al.  Production of pancreatic hormone–expressing endocrine cells from human embryonic stem cells , 2006, Nature Biotechnology.

[109]  Laura Howard,et al.  Global analysis of the transcriptional network controlling Xenopus endoderm formation , 2006, Development.

[110]  K. Anderson,et al.  p38 and a p38-Interacting Protein Are Critical for Downregulation of E-Cadherin during Mouse Gastrulation , 2006, Cell.

[111]  T. Lepage,et al.  Zebrafish endoderm formation is regulated by combinatorial Nodal, FGF and BMP signalling , 2006, Development.

[112]  P. Carlsson,et al.  Foxf1 and Foxf2 control murine gut development by limiting mesenchymal Wnt signaling and promoting extracellular matrix production , 2006, Development.

[113]  N. Pilon,et al.  Cdx4 is a direct target of the canonical Wnt pathway. , 2006, Developmental biology.

[114]  S. Leach,et al.  Wnt/β-catenin signaling is required for development of the exocrine pancreas , 2007, BMC Developmental Biology.

[115]  J. Klingensmith,et al.  Morphogenesis of the trachea and esophagus: current players and new roles for noggin and Bmps. , 2006, Differentiation; research in biological diversity.

[116]  K. Anderson,et al.  Axis specification and morphogenesis in the mouse embryo require Nap1, a regulator of WAVE-mediated actin branching , 2006, Development.

[117]  K. Kaestner,et al.  An FGF response pathway that mediates hepatic gene induction in embryonic endoderm cells. , 2006, Developmental cell.

[118]  Christina M. Sias,et al.  Nodal signals mediate interactions between the extra-embryonic and embryonic tissues in zebrafish. , 2007, Developmental biology.

[119]  D. Stainier,et al.  Genetic control of single lumen formation in the zebrafish gut , 2007, Nature Cell Biology.

[120]  D. Loebel,et al.  Gene function in mouse embryogenesis: get set for gastrulation , 2007, Nature Reviews Genetics.

[121]  D. Constam,et al.  Evolution of the mechanisms and molecular control of endoderm formation , 2007, Mechanisms of Development.

[122]  D. Stainier,et al.  Bmp and Fgf signaling are essential for liver specification in zebrafish , 2007, Development.

[123]  Michael P Hunter,et al.  The homeobox gene Hhex is essential for proper hepatoblast differentiation and bile duct morphogenesis. , 2007, Developmental biology.

[124]  Ken W. Y. Cho,et al.  TGF-beta signaling-mediated morphogenesis: modulation of cell adhesion via cadherin endocytosis. , 2007, Genes & development.

[125]  B. Hogan,et al.  Multiple dose-dependent roles for Sox2 in the patterning and differentiation of anterior foregut endoderm , 2007, Development.

[126]  H. Zoghbi,et al.  Intestine-specific ablation of mouse atonal homolog 1 (Math1) reveals a role in cellular homeostasis. , 2007, Gastroenterology.

[127]  S. Duncan,et al.  Development of the mammalian liver and ventral pancreas is dependent on GATA4 , 2007, BMC Developmental Biology.

[128]  Jeffrey A Whitsett,et al.  Transcriptional control of lung morphogenesis. , 2007, Physiological reviews.

[129]  G. R. Brink,et al.  Hedgehog Signaling in Development and Homeostasis of the Gastrointestinal Tract , 2007 .

[130]  T. Desai,et al.  Inhibition of Tgfβ signaling by endogenous retinoic acid is essential for primary lung bud induction , 2007, Development.

[131]  A. Zorn,et al.  Repression of Wnt/β-catenin signaling in the anterior endoderm is essential for liver and pancreas development , 2007, Development.

[132]  R. Habas,et al.  SnapShot: Noncanonical Wnt Signaling Pathways , 2007, Cell.

[133]  J. Wells,et al.  Translational embryology: Using embryonic principles to generate pancreatic endocrine cells from embryonic stem cells , 2007, Developmental dynamics : an official publication of the American Association of Anatomists.

[134]  K. Anderson,et al.  The FERM protein Epb4.1l5 is required for organization of the neural plate and for the epithelial-mesenchymal transition at the primitive streak of the mouse embryo , 2007, Development.

[135]  A. Fukui,et al.  SDF-1α regulates mesendodermal cell migration during frog gastrulation , 2007 .

[136]  M. Shen Nodal signaling: developmental roles and regulation , 2007, Development.

[137]  Z. Gong,et al.  Fgf10 regulates hepatopancreatic ductal system patterning and differentiation , 2007, Nature Genetics.

[138]  S. Yasugi,et al.  Regional specification of the endoderm in the early chick embryo , 2007, Development, growth & differentiation.

[139]  L. C. Murtaugh,et al.  Pancreas and beta-cell development: from the actual to the possible , 2006, Development.

[140]  D. Duboule,et al.  Hox gene function in vertebrate gut morphogenesis: the case of the caecum , 2007, Development.

[141]  E. Hagos,et al.  BMC Developmental Biology BioMed Central , 2007 .

[142]  A. Zorn,et al.  Molecular basis of vertebrate endoderm development. , 2007, International review of cytology.

[143]  P. Khoo,et al.  Sequential allocation and global pattern of movement of the definitive endoderm in the mouse embryo during gastrulation , 2007, Development.

[144]  M. Khokha,et al.  Bmp signaling is necessary and sufficient for ventrolateral endoderm specification in Xenopus , 2008, Developmental dynamics : an official publication of the American Association of Anatomists.

[145]  A. Hadjantonakis,et al.  The endoderm of the mouse embryo arises by dynamic widespread intercalation of embryonic and extraembryonic lineages. , 2008, Developmental cell.

[146]  E. J. Stringer,et al.  Cdx2 initiates histodifferentiation of the midgut endoderm , 2008, FEBS letters.

[147]  U. Hofmann,et al.  Pivotal roles for eomesodermin during axis formation, epithelium-to-mesenchyme transition and endoderm specification in the mouse , 2008, Development.

[148]  T. Schilling,et al.  Chemokine Signaling Controls Endodermal Migration During Zebrafish Gastrulation , 2008, Science.

[149]  Janet Rossant,et al.  Microarray analysis of Foxa2 mutant mouse embryos reveals novel gene expression and inductive roles for the gastrula organizer and its derivatives , 2008, BMC Genomics.

[150]  C. Domon-Dell,et al.  Multiple regulatory regions control the complex expression pattern of the mouse Cdx2 homeobox gene. , 2008, Gastroenterology.

[151]  K. Anderson,et al.  Chato, a KRAB zinc-finger protein, regulates convergent extension in the mouse embryo , 2008, Development.

[152]  M. Grompe,et al.  Generation and Regeneration of Cells of the Liver and Pancreas , 2008, Science.

[153]  E. Kroon,et al.  Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo , 2008, Nature Biotechnology.

[154]  R. Klein,et al.  Genetic ablation of FLRT3 reveals a novel morphogenetic function for the anterior visceral endoderm in suppressing mesoderm differentiation. , 2008, Genes & development.

[155]  Ken W. Y. Cho,et al.  Ventral closure, headfold fusion and definitive endoderm migration defects in mouse embryos lacking the fibronectin leucine-rich transmembrane protein FLRT3. , 2008, Developmental biology.

[156]  K. Zaret Genetic programming of liver and pancreas progenitors: lessons for stem-cell differentiation , 2008, Nature Reviews Genetics.

[157]  A. Zorn,et al.  Sfrp5 coordinates foregut specification and morphogenesis by antagonizing both canonical and noncanonical Wnt11 signaling. , 2008, Genes & development.

[158]  D. Stainier,et al.  Bmp2 signaling regulates the hepatic versus pancreatic fate decision. , 2008, Developmental cell.

[159]  G. Duester Retinoic Acid Synthesis and Signaling during Early Organogenesis , 2008, Cell.

[160]  L. Zon,et al.  APC mutant zebrafish uncover a changing temporal requirement for wnt signaling in liver development. , 2008, Developmental biology.

[161]  V. Prince,et al.  Cdx4 is required in the endoderm to localize the pancreas and limitβ -cell number , 2008, Development.

[162]  P. Lemaire,et al.  Control of gastrula cell motility by the Goosecoid/Mix.1/ Siamois network: Basic patterns and paradoxical effects , 2008, Developmental dynamics : an official publication of the American Association of Anatomists.

[163]  Asaf Levy,et al.  MicroRNA Expression Patterns and Function in Endodermal Differentiation of Human Embryonic Stem Cells , 2008, PloS one.

[164]  A. Graham Deconstructing the pharyngeal metamere. , 2008, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[165]  Sung-Kook Hong,et al.  Transcriptional profiling of endogenous germ layer precursor cells identifies dusp4 as an essential gene in zebrafish endoderm specification , 2008, Proceedings of the National Academy of Sciences.

[166]  T. Mizuno,et al.  Molecular analysis of endoderm regionalization , 2008, Development, growth & differentiation.

[167]  P. Khoo,et al.  Regionalisation of the endoderm progenitors and morphogenesis of the gut portals of the mouse embryo , 2008, Mechanisms of Development.

[168]  P. Mourrain,et al.  Live Analysis of Endodermal Layer Formation Identifies Random Walk as a Novel Gastrulation Movement , 2008, Current Biology.

[169]  A. Kuroiwa,et al.  Sdf1/Cxcr4 signaling controls the dorsal migration of endodermal cells during zebrafish gastrulation , 2008, Development.

[170]  K. Kaestner,et al.  Establishment of intestinal identity and epithelial-mesenchymal signaling by Cdx2. , 2009, Developmental cell.

[171]  G. Gittes,et al.  Developmental biology of the pancreas: a comprehensive review. , 2009, Developmental biology.

[172]  Hamid Bolouri,et al.  Developmental gene regulatory networks in the zebrafish embryo. , 2009, Biochimica et biophysica acta.

[173]  K. Kaestner,et al.  Sox17 regulates organ lineage segregation of ventral foregut progenitor cells. , 2009, Developmental cell.

[174]  M. Hebrok,et al.  Wnt5a is essential for intestinal elongation in mice. , 2009, Developmental biology.

[175]  M. C. Jørgensen,et al.  Retinoic Acid Signaling Organizes Endodermal Organ Specification along the Entire Antero-Posterior Axis , 2009, PloS one.

[176]  R. Sherwood,et al.  Transcriptional dynamics of endodermal organ formation , 2009, Developmental dynamics : an official publication of the American Association of Anatomists.

[177]  I. Burtscher,et al.  Foxa2 regulates polarity and epithelialization in the endoderm germ layer of the mouse embryo , 2009, Development.

[178]  R. Schwartz,et al.  Role of the homeodomain transcription factor Bapx1 in mouse distal stomach development. , 2009, Gastroenterology.