A Parallel algorithm for principal nth roots of matrices
暂无分享,去创建一个
[1] R. E. Yates,et al. Fast and stable algorithms for computing the principal nth root of a complex matrix and the matrix sector function , 1988 .
[2] N. Higham. Computing real square roots of a real matrix , 1987 .
[3] Eugene D. Denman,et al. Roots of real matrices , 1981 .
[4] W. D. Hoskins,et al. A faster, more stable method for computing the pth roots of positive definite matrices , 1979 .
[5] A. Stroud,et al. Gaussian quadrature formulas , 1966 .
[6] N. Higham. Newton's method for the matrix square root , 1986 .
[7] Å. Björck,et al. A Schur method for the square root of a matrix , 1983 .
[8] Leang-San Shieh,et al. Computation of the principal nth roots of complex matrices , 1985 .
[9] Alan J. Laub,et al. A Parallel Algorithm for the Matrix Sign Function , 1990, Int. J. High Speed Comput..
[10] Judith Gardiner,et al. A generalization of the matrix sign function solution for algebraic Riccati equations , 1985, 1985 24th IEEE Conference on Decision and Control.
[11] A. Laub,et al. Padé error estimates for the logarithm of a matrix , 1989 .
[12] A. Laub,et al. Rational iterative methods for the matrix sign function , 1991 .
[13] The Generalized Matrix Sector Function and the Separation of Matrix Eigenvalues , 1985 .
[14] Gene H. Golub,et al. Matrix computations , 1983 .
[15] Philip Rabinowitz,et al. Methods of Numerical Integration , 1985 .