Enhanced recursive Reed-Muller erasure decoding

Recent work have shown that Reed-Müller (RM) codes achieve the erasure channel capacity. However, this performance is obtained with maximum-likelihood decoding which can be costly for practical applications. In this paper, we propose an encoding/decoding scheme for Reed-Müller codes on the packet erasure channel based on Plotkin construction. We present several improvements over the generic decoding. They allow, for a light cost, to compete with maximum-likelihood decoding performance, especially on high-rate codes, while significantly outperforming it in terms of speed.

[1]  Ramprasad Saptharishi,et al.  Decoding high rate Reed-Muller codes from random errors in near linear time , 2015, ArXiv.

[2]  Vincent Roca,et al.  Low Density Parity Check (LDPC) Staircase and Triangle Forward Error Correction (FEC) Schemes , 2008, RFC.

[3]  Alexandre Soro,et al.  Mécanismes de fiabilisation pro-actifs , 2010 .

[4]  Johannes B. Huber,et al.  Permutation Decoding and the Stopping Redundancy Hierarchy of Cyclic and Extended Cyclic Codes , 2008, IEEE Transactions on Information Theory.

[5]  Avi Wigderson,et al.  Reed–Muller Codes for Random Erasures and Errors , 2014, IEEE Transactions on Information Theory.

[6]  Ilya Dumer,et al.  Recursive and permutation decoding for Reed-Muller codes , 2002, Proceedings IEEE International Symposium on Information Theory,.

[7]  Prof.Dr.-Ing. Ulrich Reimers Digital Video Broadcasting (DVB) , 2001, Springer Berlin Heidelberg.

[8]  A. Robert Calderbank,et al.  Reed-muller codes achieve capacity on the quantum erasure channel , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[9]  C. Hanle Feasibility study of erasure correction for multicast file distribution using the network simulator ns-2 , 1998, IEEE Military Communications Conference. Proceedings. MILCOM 98 (Cat. No.98CH36201).

[10]  Tetsunao Matsuta,et al.  国際会議開催報告:2013 IEEE International Symposium on Information Theory , 2013 .

[11]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[12]  Rüdiger L. Urbanke,et al.  Polar Codes for Channel and Source Coding , 2009, ArXiv.

[13]  Morris Plotkin,et al.  Binary codes with specified minimum distance , 1960, IRE Trans. Inf. Theory.

[14]  David E. Muller,et al.  Application of Boolean algebra to switching circuit design and to error detection , 1954, Trans. I R E Prof. Group Electron. Comput..

[15]  Vincent Roca,et al.  Reed-Solomon Forward Error Correction (FEC) Schemes , 2009, RFC.

[16]  Thomas Stockhammer,et al.  Raptor Forward Error Correction Scheme for Object Delivery , 2007, RFC.

[17]  Santhosh Kumar,et al.  Reed–Muller Codes Achieve Capacity on Erasure Channels , 2015, IEEE Transactions on Information Theory.

[18]  Ilya Dumer,et al.  Soft-decision decoding of Reed-Muller codes: recursive lists , 2006, IEEE Transactions on Information Theory.

[19]  Yann Oster,et al.  Benchmark of Reed-Muller codes for Short Packet Transmission , 2007 .