Mass-Conserving Implicit-Explicit Methods for Coupled Compressible Navier-Stokes Equations

Earth system models are composed of coupled components that separately model systems such as the global atmosphere, ocean, and land surface. While these components are well developed, coupling them in a single system can be a significant challenge. Computational efficiency, accuracy, and stability are principal concerns. In this study we focus on these issues. In particular, implicit-explicit (IMEX) tight and loose coupling strategies are explored for handling different time scales. For a simplified model for the air-sea interaction problem, we consider coupled compressible Navier–Stokes equations with an interface condition. Under the rigid-lid assumption, horizontal momentum and heat flux are exchanged through the interface. Several numerical experiments are presented to demonstrate the stability of the coupling schemes. We show both numerically and theoretically that our IMEX coupling methods are mass conservative for a coupled compressible Navier–Stokes system with the rigid-lid condition.

[1]  David A. Kopriva,et al.  A Conservative Isothermal Wall Boundary Condition for the Compressible Navier–Stokes Equations , 2007, J. Sci. Comput..

[2]  Alexandros Syrakos,et al.  A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods , 2016 .

[3]  Carol S. Woodward,et al.  Evaluation of Implicit‐Explicit Additive Runge‐Kutta Integrators for the HOMME‐NH Dynamical Core , 2019, Journal of Advances in Modeling Earth Systems.

[4]  P. Müller The Equations of Oceanic Motions , 2006 .

[5]  Stuart D. Smith Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature , 1988 .

[6]  Pavel B. Bochev,et al.  Interface Flux Recovery coupling method for the ocean–atmosphere system , 2020 .

[7]  E. F. Bradley,et al.  Bulk parameterization of air‐sea fluxes for Tropical Ocean‐Global Atmosphere Coupled‐Ocean Atmosphere Response Experiment , 1996 .

[8]  Emil M. Constantinescu,et al.  Acceleration of the IMplicit–EXplicit nonhydrostatic unified model of the atmosphere on manycore processors , 2017, Int. J. High Perform. Comput. Appl..

[9]  John Thuburn,et al.  Some conservation issues for the dynamical cores of NWP and climate models , 2008, J. Comput. Phys..

[10]  Jan S. Hesthaven,et al.  Application of implicit-explicit high order Runge-Kutta methods to discontinuous-Galerkin schemes , 2007, J. Comput. Phys..

[11]  Michael Bader,et al.  A High-Order , 2019 .

[12]  Steven H. Frankel,et al.  Entropy Stable Spectral Collocation Schemes for the Navier-Stokes Equations: Discontinuous Interfaces , 2014, SIAM J. Sci. Comput..

[13]  Francis X. Giraldo,et al.  High‐order semi‐implicit time‐integrators for a triangular discontinuous Galerkin oceanic shallow water model , 2009 .

[14]  Pavel B. Bochev,et al.  Explicit synchronous partitioned algorithms for interface problems based on Lagrange multipliers , 2019, Comput. Math. Appl..

[15]  Hiroaki Nishikawa,et al.  Two Ways to Extend Diffusion Schemes to Navier-Stokes Schemes: Gradient Formula or Upwind Flux , 2011 .

[16]  Lorenzo Pareschi,et al.  A Unified IMEX Runge-Kutta Approach for Hyperbolic Systems with Multiscale Relaxation , 2017, SIAM J. Numer. Anal..

[17]  Florian Lemarié,et al.  On the numerical stability of surface–atmosphere coupling in weather and climate models , 2016 .

[18]  P. Roe CHARACTERISTIC-BASED SCHEMES FOR THE EULER EQUATIONS , 1986 .

[19]  Emil M. Constantinescu,et al.  Extrapolated Implicit-Explicit Time Stepping , 2009, SIAM J. Sci. Comput..

[20]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .

[21]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[22]  Per-Olof Persson,et al.  A high-order discontinuous Galerkin method for fluid-structure interaction with efficient implicit-explicit time stepping , 2014, J. Comput. Phys..

[23]  M. Carpenter,et al.  Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .

[24]  Lorenzo Pareschi,et al.  Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2010, 1009.2757.

[25]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[26]  Eric Blayo,et al.  Analysis of Ocean-atmosphere Coupling Algorithms: Consistency and Stability , 2017, ICCS.

[27]  Nigel Wood,et al.  Runge-Kutta IMEX schemes for the Horizontally Explicit/Vertically Implicit (HEVI) solution of wave equations , 2013, J. Comput. Phys..

[28]  Francis X. Giraldo,et al.  A Conservative Discontinuous Galerkin Semi-Implicit Formulation for the Navier-Stokes Equations in Nonhydrostatic Mesoscale Modeling , 2009, SIAM J. Sci. Comput..

[29]  J. Bao,et al.  Numerical Simulations of Air-Sea Interaction under High Wind Conditions Using a Coupled Model: A Study of Hurricane Development , 2000 .

[30]  Ralf Wolke,et al.  Multirate Runge-Kutta schemes for advection equations , 2009 .

[31]  S. Valcke,et al.  The OASIS3 coupler: a European climate modelling community software , 2012 .

[32]  William R. Young,et al.  Dynamic Enthalpy, Conservative Temperature, and the Seawater Boussinesq Approximation , 2010 .

[33]  William J. Layton,et al.  Decoupled Time Stepping Methods for Fluid-Fluid Interaction , 2012, SIAM J. Numer. Anal..

[34]  Pierre Gentine,et al.  Coupling between the terrestrial carbon and water cycles—a review , 2019, Environmental Research Letters.

[35]  Mariana Vertenstein,et al.  A new flexible coupler for earth system modeling developed for CCSM4 and CESM1 , 2012, Int. J. High Perform. Comput. Appl..

[36]  Dimitri Komatitsch,et al.  Some illustrative examples of the use of a spectral-element method in ocean acoustics. , 2012, The Journal of the Acoustical Society of America.

[37]  G. Taylor,et al.  Mechanism of the production of small eddies from large ones , 1937 .

[38]  A. Quarteroni,et al.  On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels , 2001 .

[39]  W. Liu,et al.  Bulk Parameterization of Air-Sea Exchanges of Heat and Water Vapor Including the Molecular Constraints at the Interface , 1979 .

[40]  W. Washington,et al.  An Introduction to Three-Dimensional Climate Modeling , 1986 .

[41]  Adrian Sandu A Class of Multirate Infinitesimal GARK Methods , 2019, SIAM J. Numer. Anal..

[42]  Adrian Sandu,et al.  Extrapolated Multirate Methods for Differential Equations with Multiple Time Scales , 2013, J. Sci. Comput..

[43]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[44]  Jean-François Remacle,et al.  Multirate time stepping for accelerating explicit discontinuous Galerkin computations with application to geophysical flows , 2013 .

[45]  C. Bruneau,et al.  The 2D lid-driven cavity problem revisited , 2006 .

[46]  Robert Jacob,et al.  Stability Analysis of Interface Conditions for Ocean–Atmosphere Coupling , 2019, Journal of Scientific Computing.

[47]  Jonas Koko,et al.  Operator-splitting and Lagrange multiplier domain decomposition methods for numerical simulation of two coupled Navier-Stokes fluids , 2006 .

[48]  C. Deng CO2 , 2020, ioChem-BD Computational Chemistry Datasets.

[49]  Emil M. Constantinescu,et al.  Multirate Timestepping Methods for Hyperbolic Conservation Laws , 2007, J. Sci. Comput..

[50]  Edgar L. Andreas,et al.  Formulation of the Sea Surface Friction Velocity in Terms of the Mean Wind and Bulk Stability , 2015 .

[51]  V. Springel E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh , 2009, 0901.4107.

[52]  Emil M. Constantinescu,et al.  Semi-Implicit Time Integration of Atmospheric Flows with Characteristic-Based Flux Partitioning , 2015, SIAM J. Sci. Comput..

[53]  Jay Walter Larson,et al.  M × N Communication and Parallel Interpolation in Community Climate System Model Version 3 Using the Model Coupling Toolkit , 2005, Int. J. High Perform. Comput. Appl..

[54]  Carol S. Woodward,et al.  Implicit–explicit (IMEX) Runge–Kutta methods for non-hydrostatic atmospheric models , 2017 .

[55]  Francis X. Giraldo,et al.  IMEX HDG-DG: a coupled implicit hybridized discontinuous Galerkin (HDG) and explicit discontinuous Galerkin (DG) approach for shallow water systems , 2017, J. Comput. Phys..

[56]  Emil M. Constantinescu,et al.  Implicit-Explicit Formulations of a Three-Dimensional Nonhydrostatic Unified Model of the Atmosphere (NUMA) , 2013, SIAM J. Sci. Comput..