Max-plus singular values

In this paper we prove a new characterization of the max-plus singular values of a max-plus matrix, as the max-plus eigenvalues of an associated max-plus matrix pencil. This new characterization allows us to compute max-plus singu- lar values quickly and accurately. As well as capturing the asymptotic behavior of the singular values of classical matrices whose entries are exponentially pa- rameterized we show experimentally that max-plus singular values give order of magnitude approximations to the classical singular values of parameter inde- pendent classical matrices. We also discuss Hungarian scaling, which is a diagonal scaling strategy for preprocessing classical linear systems. We show that Hungarian scaling can dramatically reduce the 2-norm condition number and that this action can be explained using our new theory for max-plus singular values. Keywords: tropical algebra, max-plus algebra, singular values, diagonal scaling, condition number, optimal assignment problem We also discuss Hungarian scaling, which is a diagonal scaling strategy for preprocessing classical linear systems. We show that Hungarian scaling can dramatically reduce the d-norm condition number and that this action can be explained using our new theory for max-plus singular values.

[1]  S. Gaubert,et al.  Generic Asymptotics of Eigenvalues Using Min-Plus Algebra , 2001 .

[2]  S. Klasa,et al.  Polynomial scaling , 1990 .

[3]  Yuval Rabani,et al.  Linear Programming , 2007, Handbook of Approximation Algorithms and Metaheuristics.

[4]  Marianne Akian,et al.  Perturbation of eigenvalues of matrix pencils and the optimal assignment problem , 2004 .

[5]  Ronald L. Graham,et al.  An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set , 1972, Inf. Process. Lett..

[6]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[7]  Alexandre Ostrowski Recherches sur la méthode de graeffe et les zéros des polynomes et des séries de laurent , 1940 .

[8]  Bart De Schutter,et al.  The QR decomposition and the singular value decomposition in the symmetrized max-plus algebra , 1997, 1997 European Control Conference (ECC).

[9]  Geert Jan Olsder,et al.  Synchronization and Linearity: An Algebra for Discrete Event Systems , 1994 .

[10]  Jennifer A. Scott,et al.  The effects of scalings on the performance of a sparse symmetric indefinite solver , 2008 .

[11]  Elisabeth Gassner,et al.  A fast parametric assignment algorithm with applications in max-algebra , 2010 .

[12]  Marianne Akian,et al.  Tropical bounds for eigenvalues of matrices , 2013, 1309.7319.

[13]  Geert Jan Olsder,et al.  Max Plus at Work: Modeling and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its Applications , 2005 .

[14]  Timothy A. Davis,et al.  The university of Florida sparse matrix collection , 2011, TOMS.

[15]  P. Butkovic Max-linear Systems: Theory and Algorithms , 2010 .

[16]  Peter Butkovic,et al.  On visualization scaling, subeigenvectors and Kleene stars in max algebra , 2008, 0808.1992.

[17]  Mei Han An,et al.  accuracy and stability of numerical algorithms , 1991 .

[18]  C. Leake Synchronization and Linearity: An Algebra for Discrete Event Systems , 1994 .

[19]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[20]  Meisam Sharify,et al.  Scaling Algorithms and Tropical Methods in Numerical Matrix Analysis: Application to the Optimal Assignment Problem and to the Accurate Computation of Eigenvalues , 2011 .

[21]  Michele Benzi,et al.  Preconditioning Highly Indefinite and Nonsymmetric Matrices , 2000, SIAM J. Sci. Comput..