Weighted Bisimulation in Linear Algebraic Form

We study bisimulation and minimization for weighted automata, relying on a geometrical representation of the model, linear weighted automata ( lwa ). In a lwa , the state-space of the automaton is represented by a vector space, and the transitions and weighting maps by linear morphisms over this vector space. Weighted bisimulations are represented by sub-spaces that are invariant under the transition morphisms. We show that the largest bisimulation coincides with weighted language equivalence, can be computed by a geometrical version of partition refinement and that the corresponding quotient gives rise to the minimal weighted-language equivalence automaton. Relations to Larsen and Skou's probabilistic bisimulation and to classical results in Automata Theory are also discussed.

[1]  Eugene W. Stark,et al.  On Behaviour Equivalence for Probabilistic I/O Automata and its Relationship to Probabilistic Bisimulation , 2003, J. Autom. Lang. Comb..

[2]  Peter Buchholz Exact Performance Equivalence: An Equivalence Relation for Stochastic Automata , 1999, Theor. Comput. Sci..

[3]  Marcel Paul Schützenberger,et al.  On the Definition of a Family of Automata , 1961, Inf. Control..

[4]  Albert R. Meyer,et al.  Word problems requiring exponential time(Preliminary Report) , 1973, STOC.

[5]  Mehryar Mohri,et al.  Finite-State Transducers in Language and Speech Processing , 1997, CL.

[6]  Éric Laugerotte,et al.  Noncommutative Minimization Algorithms , 1997, Inf. Process. Lett..

[7]  Rance Cleaveland,et al.  Probabilistic I/O Automata: Theories of Two Equivalences , 2006, CONCUR.

[8]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[9]  Jean Berstel,et al.  Rational series and their languages , 1988, EATCS monographs on theoretical computer science.

[10]  Kim Guldstrand Larsen,et al.  Specification and refinement of probabilistic processes , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[11]  Roberto Segala,et al.  Modeling and verification of randomized distributed real-time systems , 1996 .

[12]  G. Strang Introduction to Linear Algebra , 1993 .

[13]  J. Hillston Compositional Markovian Modelling Using a Process Algebra , 1995 .

[14]  John G. Kemeny,et al.  Finite Markov chains , 1960 .

[15]  J. Sakarovitch Eléments de théorie des automates , 2003 .

[16]  Jacques Sakarovitch,et al.  Conjugacy and Equivalence of Weighted Automata and Functional Transducers , 2006, CSR.

[17]  Rocco De Nicola,et al.  Testing Equivalences for Processes , 1984, Theor. Comput. Sci..

[18]  Christel Baier,et al.  CONCUR 2006 - Concurrency Theory, 17th International Conference, CONCUR 2006, Bonn, Germany, August 27-30, 2006, Proceedings , 2006, CONCUR.

[19]  Christel Baier,et al.  Deciding Bisimilarity and Similarity for Probabilistic Processes , 2000, J. Comput. Syst. Sci..

[20]  Kim G. Larsen,et al.  Bisimulation through Probabilistic Testing , 1991, Inf. Comput..

[21]  Jacques Sakarovitch,et al.  On the Equivalence of -Automata , 2005, ICALP.

[22]  Peter Buchholz,et al.  Quantifying the Dynamic Behavior of Process Algebras , 2001, PAPM-PROBMIV.

[23]  Carroll Morgan,et al.  Characterising Testing Preorders for Finite Probabilistic Processes , 2007, LICS.

[24]  Maxime Crochemore,et al.  Détermination de la Représentation Standard d'une Série Reconnaissable , 1980, RAIRO Theor. Informatics Appl..

[25]  S. Lang,et al.  Introduction to Linear Algebra , 1972 .

[26]  P. Halmos Finite-Dimensional Vector Spaces , 1960 .

[27]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.

[28]  Gene H. Golub,et al.  Matrix computations , 1983 .

[29]  A. Isidori Nonlinear Control Systems , 1985 .

[30]  Peter Buchholz,et al.  Bisimulation relations for weighted automata , 2008, Theor. Comput. Sci..

[31]  Jan J. M. M. Rutten,et al.  Behavioural differential equations: a coinductive calculus of streams, automata, and power series , 2003, Theor. Comput. Sci..

[32]  Bernhard Steffen,et al.  Reactive, generative, and stratified models of probabilistic processes , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.

[33]  Jan J. M. M. Rutten Rational Streams Coalgebraically , 2008, Log. Methods Comput. Sci..

[34]  Jan J. M. M. Rutten Coinductive Counting with Weighted Automata , 2003, J. Autom. Lang. Comb..

[35]  Scott A. Smolka,et al.  Composition and Behaviors of Probabilistic I/O Automata , 1994, Theor. Comput. Sci..