The ConstructibleSetTools and ParametricSystemTools Modules of the RegularChains Library in Maple

We present two new modules of the regular chains library in Maple: constructible set tools which is the first distributed package dedicated to the maniputation of (parametric or not) constructible sets and parametric system tools which is the first implementation of comprehensive triangular decomposition. We illustrate the functionalities of these new modules by examples and describe our software design and implementation techniques. Since several existing packages have functionalities related to those of our new modules, we include an overview of the algorithms and software for manipulating constructible sets and solving parametric systems.

[1]  Xuefeng Chen,et al.  The Projection of Quasi Variety and Its Application on Geometric Theorem Proving and Formula Deduction , 2002, Automated Deduction in Geometry.

[2]  Volker Weispfenning,et al.  Comprehensive Gröbner Bases , 1992, J. Symb. Comput..

[3]  Joyce O'Halloran,et al.  GROEBNER BASES FOR CONSTRUCTIBLE SETS , 2002 .

[4]  Dongming Wang The Projection Property of Regular Systems and Its Application to Solving Parametric Polynomial Systems , 2005, Algorithmic Algebra and Logic.

[5]  Laureano González-Vega,et al.  Hilbert Stratification and Parametric Gröbner Bases , 2005, CASC.

[6]  Peng Li,et al.  Proving Geometric Theorems by Partitioned-Parametric Gröbner Bases , 2004, Automated Deduction in Geometry.

[7]  Peter Schauenburg A Gröbner-based treatment of elimination theory for affine varieties , 2007, J. Symb. Comput..

[8]  Dongming Wang,et al.  Computing Triangular Systems and Regular Systems , 2000, J. Symb. Comput..

[9]  Marc Moreno Maza,et al.  Multithreaded parallel implementation of arithmetic operations modulo a triangular set , 2007, PASCO '07.

[10]  Changbo Chen,et al.  Comprehensive Triangular Decomposition , 2007, CASC.

[11]  Akira Suzuki,et al.  An alternative approach to comprehensive Gröbner bases , 2002, ISSAC '02.

[12]  Marc Moreno Maza,et al.  Fast arithmetic for triangular sets: From theory to practice , 2009, J. Symb. Comput..

[13]  Maria Grazia Marinari,et al.  The shape of the Shape Lemma , 1994, ISSAC '94.

[14]  Michael Kalkbrener,et al.  A Generalized Euclidean Algorithm for Computing Triangular Representations of Algebraic Varieties , 1993, J. Symb. Comput..

[15]  Wenjun Wu A zero structure theorem for polynomial-equations-solving and its applications , 1987, EUROCAL.

[16]  Antonio Montes,et al.  Improving the DISPGB algorithm using the discriminant ideal , 2006, J. Symb. Comput..

[17]  Volker Weispfenning Canonical comprehensive Gröbner bases , 2003, J. Symb. Comput..

[18]  William Y. Sit A theory for parametric linear systems , 1991, ISSAC '91.

[19]  Changbo Chen,et al.  The ConstructibleSetTools and ParametricSystemTools Modules of the RegularChains Library in Maple , 2008, ICCSA Workshops.

[20]  Dongming Wang,et al.  Elimination Methods , 2001, Texts and Monographs in Symbolic Computation.

[21]  Marc Moreno Maza,et al.  The RegularChains library in MAPLE , 2005, SIGS.

[22]  Marc Moreno Maza,et al.  Making a Sophisticated Symbolic Solver Available to Different Communities of Users , 2006 .

[23]  M. M. Maza On Triangular Decompositions of Algebraic Varieties , 2000 .

[24]  Deepak Kapur,et al.  An Approach for Solving Systems of Parametric Polynomial Equations , 1993 .

[25]  Xiao-Shan Gao,et al.  Solving parametric algebraic systems , 1992, ISSAC '92.

[26]  Changbo Chen,et al.  On the verification of polynomial system solvers , 2008, Frontiers of Computer Science in China.

[27]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[28]  Éric Schost,et al.  Sharp estimates for triangular sets , 2004, ISSAC '04.

[29]  Marc Moreno Maza,et al.  On the Theories of Triangular Sets , 1999, J. Symb. Comput..

[30]  Changbo Chen,et al.  On the representation of constructible sets , 2009, ACCA.

[31]  Antonio Montes,et al.  A New Algorithm for Discussing Gröbner Bases with Parameters , 2002, J. Symb. Comput..

[32]  Fabrice Rouillier,et al.  Solving parametric polynomial systems , 2004, J. Symb. Comput..

[33]  Xiao-Shan Gao,et al.  ZERO DECOMPOSITION THEOREMS FOR COUNTING THE NUMBER OF SOLUTIONS FOR PARAMETRIC EQUATION SYSTEMS , 2003 .

[34]  Bican Xia,et al.  A complete algorithm for automated discovering of a class of inequality-type theorems , 2001, Science in China Series F Information Sciences.

[35]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[36]  Wenjun Wu,et al.  Basic principles of mechanical theorem proving in elementary geometries , 1986, Journal of Automated Reasoning.

[37]  Yang Lu Searching dependency between algebraic equations: an algorithm applied to automated reasoning , 1994 .

[38]  Akira Suzuki,et al.  A simple algorithm to compute comprehensive Gröbner bases using Gröbner bases , 2006, ISSAC '06.

[39]  Marc Moreno Maza,et al.  Computation of canonical forms for ternary cubics , 2002, ISSAC '02.

[40]  Antonio Montes,et al.  Minimal canonical comprehensive Gröbner systems , 2006, J. Symb. Comput..