Attention Please! A Hybrid Resource Recommender Mimicking Attention-Interpretation Dynamics

Classic resource recommenders like Collaborative Filtering (CF) treat users as being just another entity, neglecting non-linear user-resource dynamics shaping attention and interpretation. In this paper, we propose a novel hybrid recommendation strategy that refines CF by capturing these dynamics. The evaluation results reveal that our approach substantially improves CF and, depending on the dataset, successfully competes with a computationally much more expensive Matrix Factorization variant.

[1]  J. Kruschke,et al.  ALCOVE: an exemplar-based connectionist model of category learning. , 1992, Psychological review.

[2]  Peter Brusilovsky,et al.  2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology Improving Collaborative Filtering in Social Tagging Systems for the Recommendation of Scientific Articles , 2022 .

[3]  Shaghayegh Sahebi,et al.  Recommender Systems: Sources of Knowledge and Evaluation Metrics , 2013 .

[4]  Tobias Ley,et al.  Making Sense of Bits and Pieces: A Sensemaking Tool for Informal Workplace Learning , 2014, EC-TEL.

[5]  Dominik Kowald,et al.  TagRec: towards a standardized tag recommender benchmarking framework , 2014, HT.

[6]  Patty Kostkova,et al.  Modeling User Preferences in Recommender Systems , 2014, ACM Trans. Interact. Intell. Syst..

[7]  Tsvi Kuflik,et al.  Workshop on information heterogeneity and fusion in recommender systems (HetRec 2010) , 2010, RecSys '10.

[8]  Bracha Shapira,et al.  Recommender Systems Handbook , 2015, Springer US.

[9]  Qiudan Li,et al.  A recommender system based on tag and time information for social tagging systems , 2011, Expert Syst. Appl..

[10]  Ralf Krestel,et al.  Latent dirichlet allocation for tag recommendation , 2009, RecSys '09.

[11]  Ralf Krestel,et al.  Tag Recommendation Using Probabilistic Topic Models , 2009, DC@PKDD/ECML.

[12]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[13]  Dominik Kowald,et al.  Recommending tags with a model of human categorization , 2013, CIKM.

[14]  Tsvi Kuflik,et al.  Proceedings of the 2nd International Workshop on Information Heterogeneity and Fusion in Recommender Systems (HetRec 2011) : 27th October 2011, Chicago, IL, USA , 2011 .

[15]  Cheng-Lung Huang,et al.  Utilizing user tag-based interests in recommender systems for social resource sharing websites , 2014, Knowl. Based Syst..

[16]  Alexander Tuzhilin,et al.  On over-specialization and concentration bias of recommendations: probabilistic neighborhood selection in collaborative filtering systems , 2014, RecSys '14.

[17]  Yifan Hu,et al.  Collaborative Filtering for Implicit Feedback Datasets , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[18]  Junjie Yao,et al.  Challenging the Long Tail Recommendation , 2012, Proc. VLDB Endow..

[19]  ManolopoulosYannis,et al.  Collaborative recommender systems , 2008 .

[20]  Guy Shani,et al.  Improving Simple Collaborative Filtering Models Using Ensemble Methods , 2013, MCS.

[21]  Stephan Doerfel,et al.  An analysis of tag-recommender evaluation procedures , 2013, RecSys.

[22]  Tsvi Kuflik,et al.  Second workshop on information heterogeneity and fusion in recommender systems (HetRec2011) , 2011, RecSys '11.

[23]  Mark Steyvers,et al.  Topics in semantic representation. , 2007, Psychological review.

[24]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[25]  Dan Frankowski,et al.  Collaborative Filtering Recommender Systems , 2007, The Adaptive Web.

[26]  Martha Larson,et al.  Collaborative Filtering beyond the User-Item Matrix , 2014, ACM Comput. Surv..

[27]  Christoph Meinel,et al.  SPEAR: SPAMMING‐RESISTANT EXPERTISE ANALYSIS AND RANKING IN COLLABORATIVE TAGGING SYSTEMS , 2011, Comput. Intell..

[28]  Franca Garzotto,et al.  Decision-Making in Recommender Systems: The Role of User's Goals and Bounded Resources , 2012, Decisions@RecSys.

[29]  Lior Rokach,et al.  Recommender Systems Handbook , 2010 .

[30]  Jonathan L. Herlocker,et al.  Evaluating collaborative filtering recommender systems , 2004, TOIS.

[31]  Iván Cantador,et al.  Time-aware recommender systems: a comprehensive survey and analysis of existing evaluation protocols , 2013, User Modeling and User-Adapted Interaction.

[32]  B. Turner,et al.  The New Blackwell Companion to Social Theory , 1997 .

[33]  J. Cusack Creative Cognition: Theory, Research, and Applications , 1994 .

[34]  Franca Garzotto,et al.  Investigating the Persuasion Potential of Recommender Systems from a Quality Perspective: An Empirical Study , 2012, TIIS.

[35]  Ana de Almeida,et al.  Web Intelligence in Tourism: User Modeling and Recommender System , 2010, 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology.

[36]  Lei Shi,et al.  Trading-off among accuracy, similarity, diversity, and long-tail: a graph-based recommendation approach , 2013, RecSys.

[37]  Walter Kintsch,et al.  The Construction of Meaning , 2011, Top. Cogn. Sci..

[38]  B. Mobasher,et al.  Improving FolkRank With Item-Based Collaborative Filtering , 2009 .

[39]  Dominik Kowald,et al.  Recommending Items in Social Tagging Systems Using Tag and Time Informations , 2014, HT.

[40]  Pasquale Lops,et al.  Human Decision Making and Recommender Systems , 2013, TIIS.

[41]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[42]  J. Law Actor-network theory and material semiotics , 2009 .

[43]  Wei Dong,et al.  Collaborative Indexing and Knowledge Exploration: A Social Learning Model , 2012, IEEE Intelligent Systems.

[44]  D. Medin,et al.  SUSTAIN: a network model of category learning. , 2004, Psychological review.

[45]  Thomas Hofmann,et al.  Unifying collaborative and content-based filtering , 2004, ICML.

[46]  Simon Dooms,et al.  Dynamic generation of personalized hybrid recommender systems , 2013, RecSys.