Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62

[1]  K. Mayer,et al.  Genome sequences of three Aegilops species of the section Sitopsis reveal phylogenetic relationships and provide resources for wheat improvement , 2022, The Plant journal : for cell and molecular biology.

[2]  Jonathan D. G. Jones,et al.  Reference genome-assisted identification of stem rust resistance gene Sr62 encoding a tandem kinase , 2021 .

[3]  Robert P. Davey,et al.  Population genomic analysis of Aegilops tauschii identifies targets for bread wheat improvement , 2021, Nature biotechnology.

[4]  B. Steuernagel,et al.  A recombined Sr26 and Sr61 disease resistance gene stack in wheat encodes unrelated NLR genes , 2021, Nature Communications.

[5]  C. Pozniak,et al.  Tandem protein kinases emerge as new regulators of plant immunity. , 2021, Molecular plant-microbe interactions : MPMI.

[6]  M. Panzara Argentina first to market with drought-resistant GM wheat , 2021, Nature Biotechnology.

[7]  Sreya Ghosh,et al.  Creation and judicious application of a wheat resistance gene atlas. , 2021, Molecular plant.

[8]  Irene Papatheodorou,et al.  Gramene 2021: harnessing the power of comparative genomics and pathways for plant research , 2020, Nucleic Acids Res..

[9]  Jonathan D. G. Jones,et al.  The NLR-Annotator Tool Enables Annotation of the Intracellular Immune Receptor Repertoire1[OPEN] , 2020, Plant Physiology.

[10]  J. Dvorak,et al.  A rare gain of function mutation in a wheat tandem kinase confers resistance to powdery mildew , 2020, Nature Communications.

[11]  Xin Li,et al.  Plant NLRs: The Whistleblowers of Plant Immunity , 2019, Plant communications.

[12]  N. Mahowald,et al.  Climate change impacts the spread potential of wheat stem rust, a significant crop disease , 2019, Environmental Research Letters.

[13]  A. Hinchliffe,et al.  An efficient and reproducible Agrobacterium-mediated transformation method for hexaploid wheat (Triticum aestivum L.) , 2019, Plant Methods.

[14]  Wenjun Zhang,et al.  Wheat gene Sr60 encodes a protein with two putative kinase domains that confers resistance to stem rust. , 2019, The New phytologist.

[15]  James E. Allen,et al.  Ensembl Genomes 2020—enabling non-vertebrate genomic research , 2019, Nucleic Acids Res..

[16]  Steven L Salzberg,et al.  Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype , 2019, Nature Biotechnology.

[17]  K. Mayer,et al.  TRITEX: chromosome-scale sequence assembly of Triticeae genomes with open-source tools , 2019, Genome Biology.

[18]  Arthur T. O. Melo,et al.  Durum wheat genome highlights past domestication signatures and future improvement targets , 2019, Nature Genetics.

[19]  Jonathan D. G. Jones,et al.  Resistance gene cloning from a wild crop relative by sequence capture and association genetics , 2019, Nature Biotechnology.

[20]  Kentaroh Yoshida,et al.  Origin of wheat B-genome chromosomes inferred from RNA sequencing analysis of leaf transcripts from section Sitopsis species of Aegilops , 2019, DNA research : an international journal for rapid publication of reports on genes and genomes.

[21]  B. Steuernagel,et al.  The Coiled-Coil NLR Rph1, Confers Leaf Rust Resistance in Barley Cultivar Sudan1[OPEN] , 2018, Plant Physiology.

[22]  L. Paulin,et al.  Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family , 2018, Nature Communications.

[23]  Justin P Sandoval,et al.  The complex architecture and epigenomic impact of plant T-DNA insertions , 2019, PLoS genetics.

[24]  Jonathan D. G. Jones,et al.  Shifting the limits in wheat research and breeding using a fully annotated reference genome , 2018, Science.

[25]  B. Wulff,et al.  Wheat—the cereal abandoned by GM , 2018, Science.

[26]  S. Cesari,et al.  Multiple strategies for pathogen perception by plant immune receptors. , 2018, The New phytologist.

[27]  Jonathan D. G. Jones,et al.  Pm21 from Haynaldia villosa Encodes a CC-NBS-LRR Protein Conferring Powdery Mildew Resistance in Wheat. , 2018, Molecular plant.

[28]  Bin Ma,et al.  Genome sequence of the progenitor of wheat A subgenome Triticum urartu , 2018, Nature.

[29]  Wenjun Zhang,et al.  Identification and characterization of wheat stem rust resistance gene Sr21 effective against the Ug99 race group at high temperature , 2018, PLoS genetics.

[30]  D. Bebber,et al.  Potential for re-emergence of wheat stem rust in the United Kingdom , 2018, Communications Biology.

[31]  R. V. D. van der Hoorn,et al.  Defended to the Nines: 25 Years of Resistance Gene Cloning Identifies Nine Mechanisms for R Protein Function[OPEN] , 2018, Plant Cell.

[32]  J. Dubcovsky,et al.  Combining Traditional Mutagenesis with New High-Throughput Sequencing and Genome Editing to Reveal Hidden Variation in Polyploid Wheat. , 2017, Annual review of genetics.

[33]  Z. Pretorius,et al.  Genome Targeted Introgression of Resistance to African Stem Rust from Aegilops sharonensis into Bread Wheat , 2017, The plant genome.

[34]  Karl G. Kugler,et al.  Genome sequence of the progenitor of the wheat D genome Aegilops tauschii , 2017, Nature.

[35]  Brian Bushnell,et al.  BBMerge – Accurate paired shotgun read merging via overlap , 2017, PloS one.

[36]  Wenjun Zhang,et al.  Identification and characterization of Sr13, a tetraploid wheat gene that confers resistance to the Ug99 stem rust race group , 2017, Proceedings of the National Academy of Sciences.

[37]  L. Szabo,et al.  Characterization of Puccinia graminis f. sp. tritici isolates derived from an unusual wheat stem rust outbreak in Germany in 2013 , 2017 .

[38]  G. Moore,et al.  Comparative Mapping and Targeted‐Capture Sequencing of the Gametocidal Loci in Aegilops sharonensis , 2017, The plant genome.

[39]  Jan Vrána,et al.  Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly , 2017, Nature Biotechnology.

[40]  John K. McCooke,et al.  Construction of a map-based reference genome sequence for barley, Hordeum vulgare L. , 2017, Scientific Data.

[41]  John K. McCooke,et al.  A chromosome conformation capture ordered sequence of the barley genome , 2017, Nature.

[42]  Jonathan D. G. Jones,et al.  Discovery and characterization of two new stem rust resistance genes in Aegilops sharonensis , 2017, Theoretical and Applied Genetics.

[43]  S. Bhattacharya Deadly new wheat disease threatens Europe’s crops , 2017, Nature.

[44]  J. Doležel,et al.  Dissecting the U, M, S and C genomes of wild relatives of bread wheat (Aegilops spp.) into chromosomes and exploring their synteny with wheat. , 2016, The Plant journal : for cell and molecular biology.

[45]  B. Steuernagel,et al.  Rapid gene isolation in barley and wheat by mutant chromosome sequencing , 2016, Genome Biology.

[46]  R. Wanyera,et al.  Genetic diversity of spring wheat from Kazakhstan and Russia for resistance to stem rust Ug99 , 2016, Euphytica.

[47]  Paul Medvedev,et al.  Compacting de Bruijn graphs from sequencing data quickly and in low memory , 2016, Bioinform..

[48]  Jonathan D. G. Jones,et al.  Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture , 2016, Nature Biotechnology.

[49]  M. Luo,et al.  The wheat Sr50 gene reveals rich diversity at a cereal disease resistance locus , 2015, Nature Plants.

[50]  J. Patrick,et al.  A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat , 2015, Nature Genetics.

[51]  She Chen,et al.  The Decoy Substrate of a Pathogen Effector and a Pseudokinase Specify Pathogen-Induced Modified-Self Recognition and Immunity in Plants. , 2015, Cell host & microbe.

[52]  Heng Li,et al.  BFC: correcting Illumina sequencing errors , 2015, Bioinform..

[53]  Michael Pumphrey,et al.  Phenotypic and Genotypic Characterization of Race TKTTF of Puccinia graminis f. sp. tritici that Caused a Wheat Stem Rust Epidemic in Southern Ethiopia in 2013-14. , 2015, Phytopathology.

[54]  Michael J E Sternberg,et al.  The Phyre2 web portal for protein modeling, prediction and analysis , 2015, Nature Protocols.

[55]  M. Moscou,et al.  Mapping the ‘breaker’ element of the gametocidal locus proximal to a block of sub-telomeric heterochromatin on the long arm of chromosome 4Ssh of Aegilops sharonensis , 2015, Theoretical and Applied Genetics.

[56]  K. Yelick,et al.  A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome , 2015, Genome Biology.

[57]  Jeness C. Scott,et al.  Resistance of Aegilops Species from Israel to Widely Virulent African and Israeli Races of the Wheat Stem Rust Pathogen. , 2014, Plant disease.

[58]  A. Distelfeld,et al.  Introgression of leaf rust and stripe rust resistance from Sharon goatgrass (Aegilops sharonensis Eig) into bread wheat (Triticum aestivum L.). , 2014, Genome.

[59]  Manuel Spannagl,et al.  Ancient hybridizations among the ancestral genomes of bread wheat , 2014, Science.

[60]  Axel Himmelbach,et al.  Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond , 2013, The Plant journal : for cell and molecular biology.

[61]  J. Dvorak,et al.  The Gene Sr33, an Ortholog of Barley Mla Genes, Encodes Resistance to Wheat Stem Rust Race Ug99 , 2013, Science.

[62]  Wenjun Zhang,et al.  Identification of Wheat Gene Sr35 That Confers Resistance to Ug99 Stem Rust Race Group , 2013, Science.

[63]  Yuan Zhang,et al.  Analysis of karyotype diversity of 40 Chinese chrysanthemum cultivars , 2013 .

[64]  V. Grosso,et al.  FISHIS: Fluorescence In Situ Hybridization in Suspension and Chromosome Flow Sorting Made Easy , 2013, PloS one.

[65]  David W. Cheung,et al.  SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler , 2012, GigaScience.

[66]  Trevor W. Rife,et al.  Genotyping‐by‐Sequencing for Plant Breeding and Genetics , 2012 .

[67]  Mihaela M. Martis,et al.  A physical, genetic and functional sequence assembly of the barley genome. , 2022 .

[68]  Shin-Han Shiu,et al.  Diversity, classification and function of the plant protein kinase superfamily , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[69]  Jing Hu,et al.  SIFT web server: predicting effects of amino acid substitutions on proteins , 2012, Nucleic Acids Res..

[70]  Stefano Lonardi,et al.  An Improved Consensus Linkage Map of Barley Based on Flow‐Sorted Chromosomes and Single Nucleotide Polymorphism Markers , 2011 .

[71]  Robert J. Elshire,et al.  A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species , 2011, PloS one.

[72]  S. McNicholas,et al.  Presenting your structures: the CCP4mg molecular-graphics software , 2011, Acta crystallographica. Section D, Biological crystallography.

[73]  B. Steffenson,et al.  Aegilops sharonensis: Origin, genetics, diversity, and potential for wheat improvement , 2009 .

[74]  Gemma L. Holliday,et al.  Understanding the functional roles of amino acid residues in enzyme catalysis. , 2009, Journal of molecular biology.

[75]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[76]  Jonathan D. G. Jones,et al.  Autophagic Components Contribute to Hypersensitive Cell Death in Arabidopsis , 2009, Cell.

[77]  Melissa D. Lehti-Shiu,et al.  Evolutionary History and Stress Regulation of Plant Receptor-Like Kinase/Pelle Genes1[W][OA] , 2009, Plant Physiology.

[78]  Z. Pretorius,et al.  Detection of Virulence to Resistance Gene Sr36 Within the TTKS Race Lineage of Puccinia graminis f. sp. tritici. , 2009, Plant disease.

[79]  B. Keller,et al.  A Putative ABC Transporter Confers Durable Resistance to Multiple Fungal Pathogens in Wheat , 2009, Science.

[80]  J. Snape,et al.  High-throughput Agrobacterium-mediated barley transformation , 2008, Plant Methods.

[81]  S. Kamoun,et al.  From Guard to Decoy: A New Model for Perception of Plant Pathogen Effectors , 2008, The Plant Cell Online.

[82]  R. Haselkorn,et al.  Acc homoeoloci and the evolution of wheat genomes , 2008, Proceedings of the National Academy of Sciences.

[83]  Pascal Condamine,et al.  Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley , 2008, BMC Genomics.

[84]  R. Ward,et al.  Detection of Virulence to Resistance Gene Sr24 Within Race TTKS of Puccinia graminis f. sp. tritici. , 2008, Plant disease.

[85]  O. Sagi-Assif,et al.  Genome size and genome evolution in diploid Triticeae species. , 2007, Genome.

[86]  J. Kolmer,et al.  Resistance of Sharon Goatgrass (Aegilops sharonensis) to Fungal Diseases of Wheat. , 2007, Plant disease.

[87]  John A. Hamilton,et al.  The TIGR Rice Genome Annotation Resource: improvements and new features , 2006, Nucleic Acids Res..

[88]  Brody J Deyoung,et al.  Plant NBS-LRR proteins in pathogen sensing and host defense , 2006, Nature Immunology.

[89]  Jonathan D. G. Jones,et al.  The plant immune system , 2006, Nature.

[90]  Tatiana S. Mucyn,et al.  The Tomato NBARC-LRR Protein Prf Interacts with Pto Kinase in Vivo to Regulate Specific Plant Immunity[W] , 2006, The Plant Cell Online.

[91]  G. F. Marais,et al.  Leaf Rust and Stripe Rust Resistance Genes Derived from Aegilops Sharonensis , 2006, Euphytica.

[92]  M. G. Kim,et al.  Two Pseudomonas syringae Type III Effectors Inhibit RIN4-Regulated Basal Defense in Arabidopsis , 2005, Cell.

[93]  J. Doležel,et al.  Chromosome Sorting in Tetraploid Wheat and Its Potential for Genome Analysis , 2005, Genetics.

[94]  J. Rathjen,et al.  A Patch of Surface-Exposed Residues Mediates Negative Regulation of Immune Signaling by Tomato Pto Kinasew⃞ , 2004, The Plant Cell Online.

[95]  B. Gill,et al.  Characterization of a knock-out mutation at the Gc2 locus in wheat , 2003, Chromosoma.

[96]  J. Lennard Stem Rust of Wheat: From Ancient Enemy to Modern Foe , 2002 .

[97]  Nils Rostoks,et al.  The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[98]  David Mackey,et al.  RIN4 Interacts with Pseudomonas syringae Type III Effector Molecules and Is Required for RPM1-Mediated Resistance in Arabidopsis , 2002, Cell.

[99]  J. Doležel,et al.  Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.). , 2000, Genetics.

[100]  R. Singh,et al.  Detection of Virulence to Wheat Stem Rust Resistance Gene Sr31 in Puccinia graminis. f. sp. tritici in Uganda. , 2000, Plant disease.

[101]  E. A. van der Biezen,et al.  Plant disease-resistance proteins and the gene-for-gene concept. , 1998, Trends in biochemical sciences.

[102]  J. Macas,et al.  Mapping of repeated DNA sequences in plant chromosomes by PRINS and C-PRINS , 1997, Theoretical and Applied Genetics.

[103]  B. Gill,et al.  Genome differentiation in Aegilops. 1. Distribution of highly repetitive DNA sequences on chromosomes of diploid species. , 1996, Genome.

[104]  H. Tsujimoto Gametocidal genes in wheat and its relatives. IV. Functional relationships between six gametocidal genes. , 1995, Genome.

[105]  G. Martin,et al.  Map-based cloning of a protein kinase gene conferring disease resistance in tomato. , 1993, Science.

[106]  T. Hunter,et al.  The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. , 1988, Science.

[107]  H. Tsujimoto,et al.  Gametocidal genes in wheat and its relatives. I. Genetic analyses in common wheat of a gametocidal gene derived from Aegilops speltoides , 1984 .

[108]  S. B. Needleman,et al.  A general method applicable to the search for similarities in the amino acid sequence of two proteins. , 1970, Journal of molecular biology.

[109]  E. Lagudah,et al.  Isolation of Wheat Genomic DNA for Gene Mapping and Cloning. , 2017, Methods in molecular biology.

[110]  Melissa D. Lehti-Shiu,et al.  Evolutionary History and Stress Regulation of Plant Receptor-Like Kinase/Pelle Genes , 2009 .

[111]  Claude-Alain H. Roten,et al.  Fast and accurate short read alignment with Burrows–Wheeler transform , 2009, Bioinform..