ISOTROPIC RANDOM SIMPLICES

Some obscure, yet fundamental, formulae of integral geometry are re-considered. They are applied to determine all the moments of the random volume of various isotropic random r-dimensional simplices in En (r = 1,...,n). This paper has two main objects. First, to draw attention to certain little known, yet beautiful and fundamental, 'Jacobian' formulae of integral geometry, due to Blaschke and his school in the 1930's; this may be especially helpful for English-speaking probabilists and statisticians. Moreover, to give simple (somewhat heuristic) derivations of these formulae by means of stochastic-type 'conditional' arguments, thereby revealing their intrinsic nature. Second, to apply them to certain interesting problems in random geometry, while incidentally noting intriguing connections with the Wishart multivariate normal theory. Several of the results were presented by the author at the

[1]  Bojan Petkantschin Integralgeometrie 6. Zusammenhänge zwischen den Dichten der linearen Unterräume imn- dimensionalen Raum , 1935 .

[2]  O. Varga Integralgeometrie 3. Croftons Formeln für den Raum , 1936 .

[3]  Garrett Birkhoff,et al.  A survey of modern algebra , 1942 .

[4]  J. Hammersley The Distribution of Distance in a Hypersphere , 1950 .

[5]  H. Busemann Volume in terms of concurrent cross-sections. , 1953 .

[6]  A. James Normal Multivariate Analysis and the Orthogonal Group , 1954 .

[7]  G. Birkhoff,et al.  A survey of modern algebra , 1942 .

[8]  R. Lord The Distribution of Distance in a Hypersphere , 1954 .

[9]  T. W. Anderson,et al.  An Introduction to Multivariate Statistical Analysis , 1959 .

[10]  T. W. Anderson An Introduction to Multivariate Statistical Analysis , 1959 .

[11]  H. Flanders Differential Forms with Applications to the Physical Sciences , 1964 .

[12]  L. Nachbin,et al.  The Haar integral , 1965 .

[13]  W. Rheinboldt,et al.  Generalized hypergeometric functions , 1968 .

[14]  P. A. P. Moran,et al.  An introduction to probability theory , 1968 .

[15]  H. E. McKean,et al.  Tables of the Incomplete Beta Function , 1968 .

[16]  J. F. C. Kingman,et al.  Random secants of a convex body , 1969, Journal of Applied Probability.

[17]  R. E. Miles Poisson flats in Euclidean spaces Part I: A finite number of random uniform flats , 1969, Advances in Applied Probability.

[18]  R. E. Miles Probability Distribution of a Network of Triangles (Mary Beth Stearns) , 1969 .

[19]  H. Raynaud Sur L'enveloppe convexe des nuages de points aleatoires dans Rn . I , 1970 .

[20]  R. E. Miles On the homogeneous planar Poisson point process , 1970 .

[21]  N. L. Johnson,et al.  Tables of the Incomplete Beta-Function. , 1972 .